Artificial intelligence in assessment processes in higher education: a bibliometric analysis (2014-2024)
Main Article Content
Abstract
INTRODUCTION. Artificial Intelligence (AI) in higher education represents a significant innovation that is transforming teaching, learning, and academic assessment. The latter is essential for providing feedback to students, evaluating their understanding, and fostering continuous learning improvement. The aim of this study is to analyze the scientific production related to AI in assessment in higher education over the last decade. This analysis covers chronological and geographical productivity, as well as a detailed study of sources, keywords, and citation counts of the most prominent articles in this field. METHOD. A bibliometric and systematic review was conducted following the guidelines of the PRISMA Statement. RESULTS. Initially, 2,275 studies were identified in the Web of Science database, and after applying eligibility criteria, 130 empirical studies were selected for further analysis. DISCUSSION. The research reviewed concludes that the primary methods of integrating AI in the assessment process include automated feedback, prediction of academic performance through AI-based data analysis, the use of language models such as ChatGPT, and the consideration of associated ethical issues. A significant increase in the volume of publication was observed during the 2023-2024 period, with the United States leading scientific production and Education Sciences being the main source of dissemination. The co-word analysis reveals a lack of terminological uniformity, suggesting a need to standardize language to improve clarity in the field.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Afzaal, M., Zia, A., Nouri, J., y Fors, U. (2023). Informative Feedback and Explainable AI-Based Recommendations to Support Students’ Self-regulation. Technology, Knowledge and Learning, 29(1), 331–354. https://doi.org/10.1007/s10758-023-09650-0
Ardanuy, J. (2012). Breve introducción a la bibliometría. Universitat de Barcelona. Recuperado de: http://diposit.ub.edu/dspace/bitstream/2445/30962/1/breve%20introduccion%20bibliometria.pdf
Banerjee, P., Srivastava, A., Adjeroh, D., Reddy, Y. R., y Karimian, N. (2023). Understanding Chat-GPT: Impact Analysis and Path Forward for Teaching Computer Science and Engineering. TechRxiv. https://doi.org/10.36227/techrxiv.22639705.v1
Banihashem, S., Kerman, N., Noroozi, O., Moon, J., y Drachsler, H. (2024). Feedback sources in essay writing: Peer-generated or AI-generated feedback? International Journal of Educational Technology in Higher Education, 21(23), 1–15. https://doi.org/10.1186/s41239-024-00455-4
Bauer, E., Greisel, M., Kuznetsov, I., Berndt, M., Kollar, I., Dresel, M., Fischer, M. R. R., y Fischer, F. (2023). Using natural language processing to support peer-feedback in the age of artificial intelligence: A cross-disciplinary framework and a research agenda. British Journal of Educational Technology, 54, (5) 1222–1245 https://doi.org/10.1111/bjet.13336
Bradford, S. C. (1934). Sources of information on specific subjects. Engineering, 137, 85-86.
Chu, H. C., Hwang, G. H., Tu, Y. F., y Yang, K. H. (2022). Roles and research trends of artificial intelligence in higher education: A systematic review of the top 50 most-cited articles. Australasian Journal of Educational Technology, 38(3), 22–42. https://doi.org/10.14742/ajet.7526
Cotton, D. R., Cotton, P. A., y Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61(2), 228–239. https://doi.org/10.1080/14703297.2023.2190148
Crawford, J., Cowling, M., y Allen, K. A. (2023). Leadership is needed for ethical ChatGPT: Character, assessment, and learning using artificial intelligence (AI). Journal of University Teaching & Learning Practice, 20(3), 1–21. https://doi.org/10.53761/1.20.3.02
Fahd, K., Venkatraman, S., Miah, S., y Ahmed, K. (2022). Application of machine learning in higher education to assess student academic performance, at-risk, and attrition: A metaanalysis of literature. Education and Information Technologies, 27(3), 3743–3775. https://doi.org/10.1007/s10639-021-10741-7
Fergus, S., Botha, M., y Ostovar, M. (2023). Evaluating academic answers generated using ChatGPT. Journal of Chemical Education, 100(4), 1672–1675. https://doi.org/10.1021/acs.jchemed.3c00087
Fischer, C., Pardos, Z. A., Baker, R. S., Williams, J. J., Smyth, P., Yu, R., y Warschauer, M. (2020). Mining big data in education: Affordances and challenges. Review of Research in Education, 44(1), 130–160. https://doi.org/10.3102/0091732X20903304
Huallpa, J. J. (2023). Exploring the ethical considerations of using ChatGPT in university education. Periodicals of Engineering and Natural Sciences, 11(4), 105–115. http://dx.doi.org/10.21533/pen.v11.i4.200
Huang, J., Saleh, S., y Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies, 10(3), 206–217. https://doi.org/10.36941/ajis-2021-0077
Jiménez-García, E., Orenes-Martínez, N., y López-Fraile, L. A. (2024). Rueda de la Pedagogía para la Inteligencia Artificial: adaptación de la Rueda de Carrington. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 87–113. https://doi.org/10.5944/ried.27.1.37622
Lesage, J., Brennan, R., Eaton, S., Moya, B., Mcdermott, B., Wiens, J., y Herrero, K. (2024). Exploring natural language processing in mechanical engineering education: Implications for academic integrity. International Journal of Mechanical Engineering Education, 52(1), 88–105. https://doi.org/10.1177/03064190231166665
Liaw, S. Y., Tan, J. Z., Lim, S., Zhou, W., Yap, J., Ratan, R., Ooi, S. L., Wong, S. J., Seah, B., y Chua, W. L. (2023). Artificial intelligence in virtual reality simulation for interprofessional communication training: Mixed method study. Nurse Education Today, 122, 105718. https://doi.org/10.1016/j.nedt.2023.105718
Liu, Y., Fan, S., Xu, S., Sajjanhar, A., Yeom, S., y Wei, Y. (2023). Predicting Student Performance Using Clickstream Data and Machine Learning. Education Sciences, 13(1), 17. https://doi.org/10.3390/educsci13010017
Luckin, R. (2017). Towards artificial intelligence-based assessment systems. Nature Human Behaviour. 1 (3), 0028. https://doi.org/10.1038/s41562-016-0028
Palomo, J., Figueroa-Domecq, C., y Laguna, P. (2017). Women, peace and security state-of-art: a bibliometric analysis in social sciences based on SCOPUS database. Scientometrics, 113(1), 123–148. https://doi.org/10.1007/s11192-017-2484-x
Rico-Juan, J. R., Gallego, A.-J., y Calvo-Zaragoza, J. (2019). Automatic detection of inconsistencies between numerical scores and textual feedback in peer-assessment processes with machine learning. Computers & Education, 140, 103609, 1–16. https://doi.org/10.1016/j.compedu.2019.103609
Ruiz-Lázaro, J., Jiménez-García, E., y Huetos-Domínguez, M. (2024). Revisión sistemática sobre el uso de la tecnología en educación y el compromiso de los estudiantes en la última década. Campus Virtuales, 14(1), 139–152. https://doi.org/10.54988/cv.2025.1.1318
Ruiz-Lázaro, J. (2024). El aliado invisible: la inteligencia artificial revoluciona la preparación de la evaluación para el acceso a la universidad (EvAU). Padres y Maestros / Journal of Parents and Teachers, (398), 19–26. https://doi.org/10.14422/pym.i398.y2024.003
Sailer, M., Bauer, E., Hofmann, R., Kiesewetter, J., Glas, J., Gurevych, I., y Fischer, F. (2023). Adaptive feedback from artificial neural networks facilitates pre-service teachers’ diagnostic reasoning in simulation-based learning. Learning and Instruction, 83, 101620, 1–10. https://doi.org/10.1016/j.learninstruc.2022.101620
Saleem, N., Mufti, T., Sohail, S., y Madsen, D. (2024). ChatGPT as an innovative heutagogical tool in medical education. Cogent Education, 11(1), 1–9. https://doi.org/10.1080/2331186X.2024.2332850
Sefcik, L. T., Veeran-Colton, T., Baird, M., Price, C., y Steyn, S. (2022). An examination of student user experience (UX) and perceptions of remote invigilation during online assessment. Australasian Journal of Educational Technology, 38(2), 49–69. https://doi.org/10.14742/ajet.6871
Tarisayi, K. (2024). ChatGPT use in universities in South Africa through a socio-technical lens. Cogent Education, 11(1), 1–10. https://doi.org/10.1080/2331186X.2023.2295654
Uman, L. S. (2011). Systematic Reviews and Meta-Analyses. Journal of the Canadian Academy of Child & Adolescent Psychiatry, 20(1), 57–59.
Urrútia, G., y Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507-511.
Velt, H., Torkkeli, L., y Laine, I. (2020). Entrepreneurial ecosystem research: Bibliometric mapping of the domain. Journal of Business Ecosystems (JBE), 1(2), 43-83. https://doi.org/10.4018/JBE.20200701-oa1
Williams, R. (2024). The ethical implications of using generative chatbots in higher education. Frontiers in Education, 8, 1–8. https://doi.org/10.3389/feduc.2023.1331607
Zhang, J., Yu, Q., Zheng, F., Long, C., Lu, Z., y Duan, Z. (2016). Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, 67(4), 967–972. https://doi.org/10.1002/asi.23437