ANÁLISIS DE LOS ÍTEMS DE LA PRUEBA CAHE: USO DEL MODELO MULTIDIMENSIONAL DE CRÉDITO PARCIAL GENERALIZADO

  • Xavier G. Ordoñez Camacho UCM
  • Delia Arroyo Resino UCM
  • Covadonga Ruiz de Miguel UCM
Palabras clave: Modelo Multidimensional de Crédito Parcial Generalizado (MMCPG), actitudes, estadística, Teoría de Respuesta al Ítem (TRI), Estudiantes universitarios, escala Likert

Resumen

INTRODUCCIÓN. Recientemente Ordóñez, Romero y Ruiz de Miguel (2016) han propuesto el Cuestionario de Actitudes Hacia la Estadística (CAHE) el cual tiene evidencia de validez y de fiabilidad. Sin embargo, requiere de un análisis más exhaustivo de los ítems para ampliar la evidencia de validez de los mismos en las distintas dimensiones. MÉTODO. Por ello, en el presente estudio el objetivo es ampliar la evidencia de la calidad psicométrica del CAHE, a través de la aplicación del Modelo Multidimensional de Crédito Parcial Generalizado (MMCPG). Se aplicó el CAHE a una muestra incidental compuesta por 836 estudiantes de la Facultad de Educación, de la Universidad Complutense de Madrid. El CAHE está compuesto por tres dimensiones: la escala de emociones negativas, la escala de emociones positivas y la escala de utilidad, con un total de 16 ítems en escala tipo Likert con 5 opciones de respuesta que van desde “completamente en desacuerdo” a “completamente de acuerdo”. Para el análisis de los ítems se ha utilizado el programa R versión 3.4.3. RESULTADOS. Los resultados muestran que el cuestionario se comporta siguiendo una estructura de 3 dimensiones donde cada uno de los ítems en cada una de las dimensiones, presenta adecuados valores en los parámetros de discriminación y dificultad. DISCUSIÓN. Por lo tanto, los resultados permiten ampliar la validez reportada anteriormente, siendo, hasta la fecha, una de las pocas pruebas con evidencia de validez a nivel de constructo y de ítems.

Biografía del autor/a

Xavier G. Ordoñez Camacho, UCM

Profesor Contratado Doctor de la Universidad Complutense de Madrid. Psicólogo de la Universidad Nacional de Colombia, Máster en Metodología de las Ciencias de Comportamiento y de la Salud por la Universidad Autónoma de Madrid y Doctor por la Universidad Complutense de Madrid. Especialista en Metodología de la investigación, métodos multivariados aplicados a psicología y educación, Psicometría y construcción de pruebas. Sus líneas de interés versan sobre medición de actitudes y sus efectos en procesos de enseñanza - aprendizaje, diseño de rubricas y estadísticos para la detección de copia.

Covadonga Ruiz de Miguel, UCM

Doctora en Filosofía y Ciencias de la Educación por la UCM, con Premio Extraordinario de Doctorado. Es profesora titular de Universidad en el Departamento de Investigación y Psicología en Educación de la Facultad de Educación (UCM). Imparte docencia en asignaturas de Métodos de Investigación y Estadística Aplicada a las CC Sociales en los Grados de Infantil y Pedagogía. Ha sido coordinadora del Grado en Pedagogía de la UCM entre 2012 y 2018 y actualmente es la Secretaria Académica de la Facultad de Educación de la UCM.

Citas

○ Abad, F., Ponsoda, V. y Revuelta, J. (2006). Modelos politómicos de respuesta al ítem. Madrid: La Muralla.

○ Abal, F. J. P., Auné, S. E., Lozzia, G. S. y Attorresi, H. F. (2015). Modelización de una prueba de afecto hacia la matemática con la teoría de respuesta al ítem. Revista de Psicología, 11(21), 23-34. Recuperado de http://bibliotecadigital.uca.edu.ar/repositorio/revistas/modelizacion-prueba-afecto-matematica.pdf

○ Aiken, L. R. y Dreger, R. M. (1961). El efecto de las actitudes en el desempeño en Mathematics. Diario de Psicología de la Educación, 52(1), 19-24.

○ Auzmendi, E. (1992). Las actitudes hacia la matemática estadística en las enseñanzas medias y universitarias. Bilbao: Mensajero.

○ Bazán, J. L. y Sotero, H. (1998). Una aplicación al estudio de actitudes hacia la matemática en la UNALM. Revista Anales Científicos. UNALM, 36(1), 60-72.

○ Blanco, A. (2008). Una revisión crítica sobre la investigación sobre las actitudes de los estudiantes universitarios hacia la estadística. Revista Complutense de Educación, 19(2), 311-330.

○ Cazorla, I., Silva da, C., Vendramini, C. y Brito, M. (1999). Adaptación y validación de una escala de actitudes hacia la estadística. En Conferência Internacional: Experiências e expectativas do Ensino da Estatística (pp. 45-58). Florianópolis, Brasil.

○ Chalmers, R. P. (2012). Mirt: A Multidimensional Item Response Theory Package for the R Environment. Journal of Statistical Software, 48(6), 1-29. doi: 10.18637/jss.v048.i06

○ Chang, H. y Beilock, S. L. (2016). The math anxiety-math performance link and its relation to individual and environmental factors: a review of current behavioral and psychophysiological research. Current Opinion in Behavioral Sciences, 10, 33-38. doi: 10.1016/j.cobeha.2016.04.011

○ Comas, C., Martins, J., Nascimento, M. y Estrada, A. (2017). Estudio de las Actitudes hacia la Estadística en Estudiantes de Psicología. Boletim de Educação Matemática, 31(57). doi: 10.1590/1980-4415v31n57a23

○ Drasgow, F., Levine, M. V. y Williams, E. A. (1985). Appropriateness measurement with polychotomous item response models and standardized indices. British Journal of Mathematical and Statistical Psychology, 38, 67-86.

○ Estrada, A. (2002). Análisis de las actitudes y conocimientos estadísticos elementales en la formación del profesorado (tesis doctoral). Universitat Autònoma de Barcelona, Barcelona.

○ Estrada, A., Batanero, C. y Fortuny, J. (2006). Análisis de las actitudes y conocimientos estadísticos elementales en la formación del profesorado. Tarbiya, 38, 79-90.

○ García-Martínez, J., Fallas-Vargas, M. y Romero-Hernández, A. (2015). Las actitudes hacia la estadística del estudiantado de orientación. Revista Electrónica Educare, 19(1), 25-41. doi: 10.15359/ree.19-1.2

○ Gómez Chacón, I. (2000). Matemática emocional. Los afectos en el aprendizaje matemático. Madrid: Narcea.

○ Kang, T. y Chen, T. T. (2007). An investigation of the performance of the generalized S-X2 item-fit index for polytomous IRT models. ACT Research Report Series.

○ Maydeu-Olivares, A. y Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713-732.

○ Mc Leod, D. B. (1994). Research on affect and mathematics learning in the JRME: 1970 to the present. Journal for Research in Mathematics Education, 25(6), 637-647. doi: 10.2307/749576

○ Montaño, R. (2009). Una comparación de las estadísticas de bondad de ajuste R1 y M2 para modelos de la Teoría de Respuesta al Ítem (tesis doctoral no publicada). Universidad de Barcelona, Barcelona.

○ Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159-176.

○ Ngussa, B. M. y Mbuti, E. E. (2017). The Influence of Humour on Learners’ Attitude and Mathematics Achievement: A Case of Secondary Schools in Arusha City, Tanzania. Journal of Educational Research, 2(3), 170-181.

○ Ordóñez, X., Romero, R. y Ruiz, C. (2016). Cuestionario de Actitudes Hacia la Estadística (CAHE): evidencias de validez y fiabilidad de las puntuaciones en una muestra de alumnos de Educación. Bordón, 68(4), 121-136. doi: 10.13042

○ Orlando, M. y Thissen, D. (2000). Likelihood-based item fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50-64.

○ Ostini, R. y Nering, M. L. (2006). Polytomous item response theory models. London: Sage pub.

○ Ostini, R. y Nering, M. L. (2010). Handbook of Polytomous item response theory models. London: Taylor & Francis Group.

○ Palacios, A., Arias, V. y Arias, B. (2014). Actitudes hacia las matemáticas: construcción y validación de un instrumento de medición. Revista de Psicodidáctica, 19(1), 67-91. doi: 10.1387 / RevPsicodidact.8961

○ Phillips, R. (2007). Mathematics teachers’ beliefs and affects. En F. Lester, Second Handbook of Research on Mathematics Teaching and Learning (pp. 257-315). Charlotte: Information Age Publishing and National Council of Teachers of Mathematics.

○ Post, W. J, Van Duijn, M. A. J. y Van Baarsen, B. (2001). Tracelines de un solo pico o monótono? En la elección de un modelo IRT para escalar datos. En A. Boomsma, MAJ van Duijn y TAB Snijders (eds.), Ensayos sobre la teoría de la respuesta al ítem (pp. 391-414). Nueva York: Springer.

○ R Core Team (2017). R: A language and environment for statistical computing. Foundation for statistical Computing. Vienna, Austria. Recuperado de http://www.r-project.org/

○ Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer.

○ Roberts, D. M. y Bilderback, E. W. (1980). Reliability and validity of a statistics attitude survey. Educational and Psychological Measurement, 40, 235-238. doi: 10.1177/001316448004000138

○ Rodríguez, O. y Mora, S. (2016). Análisis psicométrico del instrumento Actitudes hacia las Matemáticas mediante el modelo de Respuesta Graduada de Samejima. Actualidades en Psicología, 30(120), 7-30. doi: 10.15517/ap.v30i120.18722

○ RStudio Team (2018). RStudio: Integrated Development for R. RStudio, Inc. Boston, Massachusetts. Recuperado de http://www.rstudio.com/

○ Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psychometrika Monograph, 17, 3-21.

○ Schau, C., Stevens, J., Dauphine, T. y Del Vecchio, A. (1995). The development and validation of the survey of attitudes towards statistics. Educational and Psychological Measurement, 55(5), 868-875. doi: 10.1177/0013164495055005022

○ Syyeda, F. (2016). Understanding Attitudes Towards Mathematics (ATM) using a Multi-modal Model: An Exploratory Case Study with Secondary School Children in England. Cambridge Open-Review Educational Research e-Journal, 3, 32-62. Recuperado de http://corerj.soc.srcf.net/?page_id=224

○ Tarazona, E., Bazán, J. y Aparico, A. (2013). Actitudes hacia la estadística en universitarios peruanos de mediana edad. Revista Digital de Investigación en Docencia Universitaria, 1, 58-76.

○ Tshabalala, T. y Ncube, A. C. (2016). Causes of poor performance of ordinary level pupils in mathematics in rural secondary schools in Nkayi district: Learner’s attributions. Nova Journal of Medical and Biological Sciences, 15(1), 122-136.

○ Vendramini, C. M. M., Silva, M. C. R. D. y Dias, A. S. (2009). Assessment of psychology students' attitudes through credit partial model of IRT. Psico-USF, 14(3), 287-298. doi: 10.1590/S1413-82712009000300005

○ Wise, S. (1985). The development and validation of a scale measuring attitudes toward statistics. Educational and Psychological Measurement 2(45), 401-405. doi: 10.1177/001316448504500226

○ Yao, L. y Schwarz, R. D. (2006). A multidimensional partial credit model with associated item and test statistics: An application to mixed-format tests. Applied Psychological Measurement, 30(6), 469-492.

Publicado
2019-05-26
Cómo citar
Ordoñez Camacho, X., Arroyo Resino, D., & Ruiz de Miguel, C. (2019). ANÁLISIS DE LOS ÍTEMS DE LA PRUEBA CAHE: USO DEL MODELO MULTIDIMENSIONAL DE CRÉDITO PARCIAL GENERALIZADO. Bordón. Revista De Pedagogía, 71(2), 125-137. https://doi.org/10.13042/Bordon.2019.66880
Sección
Artículos