Attitudes envers l’intelligence artificielle et leur relation avec la satisfaction scolaire : le rôle médiateur du confort dans son utilisation éducative
Contenu principal de l'article
Résumé
INTRODUCTION. L’intégration de l’intelligence artificielle (IA) dans l’enseignement supérieur est un sujet d’une importance croissante ces dernières années. Ce phénomène transforme non seulement la manière dont les cours sont dispensés et redéfinit également l’expérience académique des étudiants. Cette étude vise à comprendre comment les attitudes des étudiants envers l’IA influencent leur satisfaction académique et leur aisance à utiliser cette technologie. MÉTHODE. L’étude a été menée auprès d’un échantillon de 169 étudiants de premier cycle (55,03% de femmes, âge moyen = 28 ans) au Pérou. Des versions adaptées de l’échelle des attitudes générales envers l’intelligence artificielle, de l’échelle de satisfaction académique et de l’échelle d’aisance dans l’utilisation éducative de l’IA ont servi d’instruments. Deux modèles de médiation ont été appliqués pour examiner les relations entre les attitudes envers l’IA et les variables dépendantes. RÉSULTATS. Les analyses statistiques ont révélé que le confort dans l’utilisation éducative de l’IA et la satisfaction académique médiaient partiellement les relations entre les attitudes envers l’IA et les variables dépendantes. Ces résultats indiquent qu’un plus grand confort dans l’utilisation des outils d’IA peut conduire à une plus grande satisfaction académique et inversement. De plus, une interaction bidirectionnelle a été observée entre la satisfaction scolaire et l’aisance dans l’utilisation de l’IA. DISCUSSION. Ces résultats suggèrent qu’il est essentiel de prendre en compte l’influence des attitudes des étudiants sur leur expérience académique pour mettre en œuvre efficacement l’IA dans
l’enseignement supérieur. Cette prise en compte a des implications importantes pour les futures stratégies éducatives en matière de formation continue, les politiques d’inclusion et les recherches futures.
Téléchargements
Renseignements sur l'article

Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale 4.0 International.
Références
Abbas, N., Ali, I., Manzoor, R., Hussain, T., & Hussain, M. H. A. I. (2023). Role of Artificial Intelligence Tools in Enhancing Students’ Educational Performance at Higher Levels. Journal of Artificial Intelligence, Machine Learning and Neural Network, 35, 36-49. https://doi.org/10.55529/jaimlnn.35.36.49
Al-Rahmi, A. M., Shamsuddin, A., Alturki, U., Aldraiweesh, A., Yusof, F. M., Al-Rahmi, W. M., & Aljeraiwi, A. A. (2021). The Influence of Information System Success and Technology Acceptance Model on Social Media Factors in Education. Sustainability, 13(14), 7770. https://doi.org/10.3390/su13147770
Alzahrani, L. (2023). Analyzing Students’ Attitudes and Behavior Toward Artificial Intelligence Technologies in Higher Education. International Journal of Recent Technology and Engineering (IJRTE), 11(6), 65-73. https://doi.org/10.35940/ijrte.F7475.0311623
Atta, M. T., & Romli, A. (2018). The Mediation Effect of Intention to Use Information System on the Association Between Usability and User’s Satisfaction in UMP. Advanced Science Letters, 24(10), 7806-7809. https://doi.org/10.1166/asl.2018.13021
Bansah, A. K., & Darko, D. (2022). Perceived convenience, usefulness, effectiveness and user acceptance of information technology: Evaluating students’ experiences of a Learning Management System. Technology, Pedagogy and Education, 31(4), 431-449. https://doi.org/10.1080/1475939X.2022.2027267
Chai, C. S., Lin, P.-Y., Jong, M. S., Dai, Y., Chiu, T. K. F., & Huang, B. (2020, agosto 24). Factors Influencing Students’ Behavioral Intention to Continue Artificial Intelligence Learning. 2020 International Symposium on Educational Technology (ISET), Bangkok, Thailand. https://doi.org/10.1109/ISET49818.2020.00040
Chen, M., Siu-Yung, M., Chai, C. S., Zheng, C., & Park, M.-Y. (2021, agosto 10). A Pilot Study of Students’ Behavioral Intention to Use AI for Language Learning in Higher Education. 2021 International Symposium on Educational Technology (ISET), Tokai, Nagoya, Japón. https://doi.org/10.1109/ISET52350.2021.00045
Chen, Y.-H., Huang, N.-F., Tzeng, J.-W., Lee, C., Huang, Y.-X., & Huang, H.-H. (2022, enero 6). A Personalized Learning Path Recommender System with LINE Bot in MOOCs Based on LSTM. 2022 11th International Conference on Educational and Information Technology (ICEIT), Chengdu, China. https://doi.org/10.1109/ICEIT54416.2022.9690754
Choi, S., Jang, Y., & Kim, H. (2023). Exploring factors influencing students’ intention to use intelligent personal assistants for learning. Interactive Learning Environments, 1-14. https://doi.org/10.1080/10494820.2023.2194927
Crompton, H., & Burke, D. (2023). Artificial intelligence in higher education: The state of the field. International Journal of Educational Technology in Higher Education, 20(1), 22. https://doi.org/10.1186/s41239-023-00392-8
Cruz-Benito, J., Sánchez-Prieto, J. C., Therón, R., & García-Peñalvo, F. J. (2019). Measuring Students’ Acceptance to AI-Driven Assessment in eLearning: Proposing a First TAM-Based Research Model. 15-25. https://doi.org/10.1007/978-3-030-21814-0_2
Dai, Y., Chai, C.-S., Lin, P.-Y., Jong, M. S.-Y., Guo, Y., & Qin, J. (2020). Promoting Students’ Well-Being by Developing Their Readiness for the Artificial Intelligence Age. Sustainability, 12(16), 6597. https://doi.org/10.3390/su12166597
Granić, A., & Marangunić, N. (2019). Technology acceptance model in educational context: A systematic literature review. British Journal of Educational Technology, 50(5), 2572-2593. https://doi.org/10.1111/bjet.12864
Guerra-Tamez, C. R. (2023). The Impact of Immersion through Virtual Reality in the Learning Experiences of Art and Design Students: The Mediating Effect of the Flow Experience. Education Sciences, 13(2), 185. https://doi.org/10.3390/educsci13020185
Haryanto, E., & Ali, R. M. (2019). Students’ Attitudes towards the Use of Artificial Intelligence SIRI in EFL Learning at One Public University. 1(1), 190-195. https://conference.unsri.ac.id/index.php/semirata/article/view/1102/0
Kim, J., Lee, H., & Cho, Y. H. (2022). Learning design to support student-AI collaboration: Perspectives of leading teachers for AI in education. Education and Information Technologies, 27(5), 6069-6104. https://doi.org/10.1007/s10639-021-10831-6
Kim, J., Merrill, K., Xu, K., & Sellnow, D. D. (2020). My Teacher Is a Machine: Understanding Students’ Perceptions of AI Teaching Assistants in Online Education. International Journal of Human–Computer Interaction, 36(20), 1902-1911. https://doi.org/10.1080/10447318.2020.1801227
Kim, J.-M. (2017). Study on Intention and Attitude of Using Artificial Intelligence Technology in Healthcare. Journal of Convergence for Information Technology, 7(4), 53-60. https://doi.org/10.22156/CS4SMB.2017.7.4.053
Kim, S.-W., & Lee, Y. (2020). Attitudes toward Artificial Intelligence of High School Students’ in Korea. Journal of the Korea Convergence Society, 11(12), 1-13. https://doi.org/10.15207/JKCS.2020.11.12.001
Lee, A. (2022). Analysis of the Effectiveness of Online Education of Liberal Arts Coding Classes in the AI Era: The Mediating Effect of Learning Flow. J-Institute, 7(1), 22-33. https://doi.org/10.22471/ai.2022.7.1.22
Li, K. (2023). Determinants of College Students’ Actual Use of AI-Based Systems: An Extension of the Technology Acceptance Model. Sustainability, 15(6), 5221. https://doi.org/10.3390/su15065221
Lin, H., & Chen, Q. (2024). Artificial intelligence (AI) -integrated educational applications and college students’ creativity and academic emotions: Students and teachers’ perceptions and attitudes. BMC Psychology, 12(1), 487. https://doi.org/10.1186/s40359-024-01979-0
Lin, H.-C. K., Liao, Y.-C., & Wang, H.-T. (2022). Eye Movement Analysis and Usability Assessment on Affective Computing Combined with Intelligent Tutoring System. Sustainability, 14(24), 16680. https://doi.org/10.3390/su142416680
Lin, Y.-T., & Wang, T.-C. (2022). A Study of Primary Students’ Technology Acceptance and Flow State When Using a Technology-Enhanced Board Game in Mathematics Education. Education Sciences, 12(11), 764. https://doi.org/10.3390/educsci12110764
López-Bonilla, L. M., & López-Bonilla, J. M. (2017). Explaining the discrepancy in the mediating role of attitude in the TAM. British Journal of Educational Technology, 48(4), 940-949. https://doi.org/10.1111/bjet.12465
Medrano, L. A., & Pérez, E. (2013). Adaptación de la Escala de Satisfacción Académica a la Población Universitaria de Córdoba. Summa Psicológica, 7(2), 5-14. https://doi.org/10.18774/448x.2010.7.117
Melnikoff, D. E., Carlson, R. W., & Stillman, P. E. (2022). A computational theory of the subjective experience of flow. Nature Communications, 13(1), 2252. https://doi.org/10.1038/s41467-022-29742-2
Oliveira, W. (2019). Towards Automatic Flow Experience Identification in Educational Systems: A Human-computer Interaction Approach. Annual Symposium on Computer-Human Interaction in Play Companion Extended Abstracts, 22-25. https://doi.org/10.1145/3341215.3356336
Oliveira, W., Bittencourt, I. I., Isotani, S., Dermeval, D., Brandão, L., & Frango, I. (2018). Flow Theory to Promote Learning in Educational Systems: Is it Really Relevant? Revista Brasileira de Informática na Educação, 26(02), 29. https://doi.org/10.5753/rbie.2018.26.02.29
Padilla-Carmona, T., Gil Flores, J., & Rísquez, A. (2022). Autoeficacia en el uso de TIC en estudiantes universitarios maduros. Educación XX1, 25(1), 19-40. https://doi.org/10.5944/educxx1.30254
Pegalajar, M. C., Ruiz, L. G. B., Pérez-Moreiras, E., Boada-Grau, J., & Serrano-Fernandez, M. J. (2023). An Intelligent Approach Using Machine Learning Techniques to Predict Flow in People. Big Data and Cognitive Computing, 7(2), 67. https://doi.org/10.3390/bdcc7020067
Prifti, R. (2022). Self–efficacy and student satisfaction in the context of blended learning courses. Open Learning: The Journal of Open, Distance and e-Learning, 37(2), 111-125. https://doi.org/10.1080/02680513.2020.1755642
Rahmat, T. (2019). The Influence of Perceived Ease of Use and Usefulness of The Academic Registration System on the Attitude of Using online Study Plan Card (KRS). Journal of Theory and Applied Management, 12(3), 260. https://doi.org/10.20473/jmtt.v12i3.15434
Rodway, P., & Schepman, A. (2023). The impact of adopting AI educational technologies on projected course satisfaction in university students. Computers and Education: Artificial Intelligence, 5, 100150. https://doi.org/10.1016/j.caeai.2023.100150
Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014
Schepman, A., & Rodway, P. (2023). The General Attitudes towards Artificial Intelligence Scale (GAAIS): Confirmatory Validation and Associations with Personality, Corporate Distrust, and General Trust. International Journal of Human–Computer Interaction, 39(13), 2724-2741. https://doi.org/10.1080/10447318.2022.2085400
Sholikah, M., & Sutirman, S. (2020). How Technology Acceptance Model (TAM) Factors of Electronic Learning Influence Education Service Quality through Students’ Satisfaction. TEM Journal, 1221-1226. https://doi.org/10.18421/TEM93-50
Terblanche, N., Molyn, J., Williams, K., & Maritz, J. (2023). Performance matters: Students’ perceptions of Artificial Intelligence Coach adoption factors. Coaching: An International Journal of Theory, Research and Practice, 16(1), 100-114. https://doi.org/10.1080/17521882.2022.2094278
The Jamovi Project. (2022). Jamovi open statistical platform. https://www.jamovi.org/about.html
Vargas-Zúñiga, M. P., Guerrero-Ceja, Y. J., Medina-Morón, E. M., y Salinas-Rodríguez, M. I. (2024). La Implementación de la Tecnología para el Proceso de Enseñanza-Aprendizaje. Revista Docentes 2.0, 17(2), 286–295. https://doi.org/10.37843/rted.v17i2.565
Villegas-Ch, W., Arias-Navarrete, A., y Palacios-Pacheco, X. (2020). Proposal of an Architecture for the Integration of a Chatbot with Artificial Intelligence in a Smart Campus for the Improvement of Learning. Sustainability, 12(4), 1500. https://doi.org/10.3390/su12041500
Wang, K., Cui, W., y Yuan, X. (2025). Artificial Intelligence in Higher Education: The Impact of Need Satisfaction on Artificial Intelligence Literacy Mediated by Self-Regulated Learning Strategies. Behavioral Sciences, 15(2), 165. https://doi.org/10.3390/bs15020165