Efeitos da utilização da realidade virtual na instável plataforma ICAROS® na capacidade de salto vertical de estudantes universitários

Autores

  • Frano Giakoni-Ramírez Facultad de Educación y Ciencias del Deporte, Instituto del Deporte y Bienestar, Universidad Andres Bello, Santiago 7550000, Chile https://orcid.org/0000-0002-2685-8991
  • Rodrigo Yañez-Sepúlveda Facultad de Educación y Ciencias del Deporte, Instituto del Deporte y Bienestar, Universidad Andres Bello, Viña del Mar 2520000, Chile
  • Catalina Muñoz-Strale Facultad de Educación y Ciencias del Deporte, Instituto del Deporte y Bienestar, Universidad Andres Bello, Santiago 7550000, Chile https://orcid.org/0009-0002-5354-1313
  • Daniel Duclos-Bastías Escuela de Educación Física, Pontificia Universidad Católica de Valparaíso,Valparaíso 2374631, Chile https://orcid.org/0000-0002-9020-5776
  • Andrés Godoy-Cumillaf Grupo de Investigación en Educación Física, Salud y Calidad de Vida, Facultad de Educación,Universidad Autónoma de Chile, Temuco 4780000, Chile https://orcid.org/0000-0001-8613-6838
  • Juan Pablo Melej Elgart Feel and Move
  • Cristóbal Ramírez Facusse Feel and Move

DOI:

https://doi.org/10.47197/retos.v61.108073

Palavras-chave:

Realidade virtual, PAPE, PAP, base instável, Salto

Resumo

A utilização de realidade virtual e de plataformas instáveis ​​no âmbito desportivo tem ganho recentemente interesse devido ao seu potencial para melhorar o desempenho físico graças à simulação de diferentes ambientes. Neste sentido, é necessário investigar os efeitos do exercício de alta intensidade com recurso à realidade virtual em plataforma instável na força dos membros inferiores, pelo que se pretendeu identificar o efeito agudo de uma sessão de realidade virtual com plataforma instável para repetir saltos em estudantes universitários. Para o inquérito foi incluída uma amostra de 268 estudantes universitários divididos em três grupos. A força dos membros inferiores foi avaliada através de saltos, tanto PRÉ como PÓS exercício. Foram observadas diferenças na altura do Squat Jump (SJ) dentro dos três grupos (F=39,32; p<0,001; d=0,217). Foram também observadas diferenças no salto com contra movimento (CMJ) (F=11,67; p<0,001; d=0,076). Não se verificaram diferenças na altura do salto de Abalakov (ABALA) entre os grupos (F=8,73; p<0,001; d=0,058). Contudo, não foram registadas diferenças entre os grupos antes e depois da intervenção (p<0,05). O exercício de alta intensidade em realidade virtual numa plataforma instável melhorou a força e a capacidade de salto em estudantes universitários, em comparação com exercícios semelhantes numa superfície estável. No entanto, o grupo ICAROS não apresentou melhorias significativas na altura do salto, embora tenha reduzido a duração entre determinados saltos na plataforma instável. Estes resultados estão relacionados com o fenómeno da potencialização pós-ativação (PAP) após exercício intenso. Concluindo, este estudo sugere que exercícios de alta intensidade utilizando realidade virtual numa plataforma instável podem melhorar a força dos membros inferiores em estudantes universitários. Estas descobertas sublinham o potencial da realidade virtual como uma ferramenta inovadora no treino desportivo.

Palavras-chave: Realidade virtual, plataformas instáveis, PAP, PAPE, Icaros Cloud 360

Referências

Arabatzi, F., Kellis, E., & Saèz-Saez De Villarreal, E. (2010). Vertical jump biomechanics after plyometric, weightlifting, and combined (weight lifting + plyometric) training. Journal of strength and conditioning research, 24(9), 2440–2448. https://doi.org/10.1519/JSC.0b013e3181e274ab

Armstrong, W., Grinnell, D., & Warren, S. (2010). The acute effect of whole-body vibration on the vertical jump height. Journal of strength and conditioning research, 24(10), 2835–2839. https://doi.org/10.1519/JSC.0b013e3181e271cc

Bailenson, J. (2018). Experience on demand: What virtual reality is, how it works, and what it can do. WW Norton & Company.

Barroso, R., Silva-Batista, C., Tricoli, V., Roschel, H., & Ugrinowitsch, C. (2013). The effects of different intensities and durations of the general warm-up on leg press 1RM. Journal of strength and conditioning research, 27(4), 1009–1013. https://doi.org/10.1519/JSC.0b013e3182606cd9

Blazevich, A., & Babault, N. (2019). Post-activation Potentiation Versus Post-Activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01359

Bosco, C., Luhtanen, P., & Komi, P. (1983). A simple method for measurement of mechanical power in jumping. Europe-an Journal of Applied Physiology and Occupational Physiology, 50(2), 273–282. https://doi.org/10.1007/bf00422166

Boullosa, D., Beato, M., Dello Iacono, A., Cuenca-Fernández, F., Doma, K., Schumann, M., Zagatto, A., Loturco, I., & Behm, D. (2020). A New Taxonomy for Postactivation Potentiation in Sport. International Journal of Sports Physiology and Performance, 15(8), 1197–1200. https://doi.org/10.1123/ijspp.2020-0350

Boullosa, D., Del Rosso, S., Behm, D., & Foster, C. (2018). Post-activation potentiation (PAP) in endurance sports: A review. European Journal of Sport Science, 18(5), 595–610. https://doi.org/10.1080/17461391.2018.1438519

Cabrejas, C., Solana-Tramunt, M., Morales, J., Campos-Rius, J., Ortegón, A., Nieto-Guisado, A., & Carballeira, E. (2022). The Effect of Eight-Week Functional Core Training on Core Stability in Young Rhythmic Gymnasts: A Ran-domized Clinical Trial. International Journal of Environmental Research and Public Health, 19(6), 3509. https://doi.org/10.3390/ijerph19063509

Chen, Z., Lo, S., Wang, M., Yu, C., & Peng, H. (2017). Can Different Complex Training Improve the Individual Phenom-enon of Post-Activation Potentiation?. Journal of Human Kinetics, 56, 167–175. https://doi.org/10.1515/hukin-2017-0034

Cochrane, D., Legg, S., & Hooker, M. (2004). The short-term effect of whole-body vibration training on vertical jump, sprint, and agility performance. Journal of Strength and Conditioning Research, 18(4), 828–832. https://doi.org/10.1519/14213.1

Cochrane, D., Stannard, S., Sargeant, A., & Rittweger, J. (2008). The rate of muscle temperature increases during acute whole-body vibration exercise. European Journal of Applied Physiology, 103(4), 441–448. https://doi.org/10.1007/s00421-008-0736-4

Colson, S., Pensini, M., Espinosa, J., Garrandes, F., & Legros, P. (2010). Whole-body vibration training effects on the physical performance of basketball players. Journal of Strength and Conditioning Research, 24(4), 999–1006. https://doi.org/10.1519/JSC.0b013e3181c7bf10

Comyns, T., Harrison, A., Hennessy, L., & Jensen, R. (2006). The optimal complex training rest interval for athletes from anaerobic sports. Journal of Strength and Conditioning Research, 20(3), 471–476. https://doi.org/10.1519/18445.1

Cormie, P., Deane, R., Triplett, N., & McBride, J. (2006). Acute effects of whole-body vibration on muscle activity, strength, and power. Journal of Strength and Conditioning Research, 20(2), 257–261. https://doi.org/10.1519/R-17835.1

Cormie, P., McGuigan, M., & Newton, R. (2011). Developing Maximal Neuromuscular Power. Sports Medicine, 41(1), 17–38. https://doi.org/10.2165/11537690-000000000-00000

Cuenca-Fernández, F., Smith, I., Jordan, M., MacIntosh, B., López-Contreras, G., Arellano, R., & Herzog, W. (2017). Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: a pilot study. Applied Physiol-ogy, Nutrition, and Metabolism, 42(10), 1122–1125. https://doi.org/10.1139/apnm-2017-0217

Davoodi, B., Arshadi, S., & Bouri, S. Z. (2010). Effect of whole body vibrations on performance indexes of aerobic power and flexibility in non-athlete men. British Journal of Sports Medicine, 44(Suppl 1), i10.3-i10. https://doi.org/10.1136/bjsm.2010.078725.28

de Keijzer, K., McErlain-Naylor, S., Dello Iacono, A., & Beato, M. (2020). Effect of Volume on Eccentric Overload–Induced Postactivation Potentiation of Jumps. International Journal of Sports Physiology and Performance, 15(7), 976–981. https://doi.org/10.1123/ijspp.2019-0411

Edman, K., & Andersson, K. (1968). The variation in active tension with sarcomere length in vertebrate skeletal muscle and its relation to fibre width. Experientia, 24(2), 134–136. https://doi.org/10.1007/bf02146942

Faure, C., Limballe, A., Bideau, B., & Kulpa, R. (2020). Virtual reality to assess and train team ball sports performance: A scoping review. Journal of Sports Sciences, 38(2), 192–205. https://doi.org/10.1080/02640414.2019.1689807

Ferri-Caruana, A., Prades-Insa, B., & Serra-Añó, P. (2020). Effects of pelvic and core strength training on biomechanical risk factors for anterior cruciate ligament injuries. The Journal of Sports Medicine and Physical Fitness, 60(8), 1128–1136. https://doi.org/10.23736/S0022-4707.20.10552-8

Franklin, D., Osu, R., Burdet, E., Kawato, M., & Milner, T. (2003). Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. Journal of Neurophysiology, 90(5), 3270–3282. https://doi.org/10.1152/jn.01112.2002

Folland, J., Wakamatsu, T., & Fimland, M. (2008). The influence of maximal isometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance. European Journal of Applied Physiology, 104(4), 739–748. https://doi.org/10.1007/s00421-008-0823-6.

French, D., Kraemer, W., & Cooke, C. (2003). Changes in Dynamic Exercise Performance Following a Sequence of Pre-conditioning Isometric Muscle Actions. Journal of Strength and Conditioning Research, 17(4), 678–685. https://doi.org/10.1519/00124278-200311000-00009

Giakoni-Ramírez, F., Godoy-Cumillaf, A., Fuentes-Merino, P., Farías-Valenzuela, C., Duclos-Bastías, D., Bruneau-Chávez, J., Merellano-Navarro, E., & Velásquez-Olavarría, R. (2023). Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality. Healthcare, 11(17), 2399. https://doi.org/10.3390/healthcare11172399

Greengard, S. (2019). Virtual Reality. The MIT Press Essential Knowledge Series https://doi.org/10.7551/mitpress/11836.001.0001

Guo, L., Wu, Y., & Li, L. (2020). Dynamic Core Flexion Strength is Important for Using Arm-Swing to Improve Coun-termovement Jump Height. Applied Sciences, 10(21), 7676. https://doi.org/10.3390/app10217676

Hamada, T., Sale, D., MacDougall, J., & Tarnopolsky, M. (2000). Postactivation potentiation, fiber type, and twitch con-traction time in human knee extensor muscles. Journal of Applied Physiology, 88(6), 2131–2137. https://doi.org/10.1152/jappl.2000.88.6.2131

Hawkey, A. (2012). Whole body vibration training improves muscular power in a recreationally active population. Sportlogia, 8(2), 116–122. https://doi.org/10.5550/sgia.120802.en.116h

Hibbs, A., Thompson, K., French, D., Wrigley, A., & Spears, I. (2008). Optimizing Performance by Improving Core Sta-bility and Core Strength. Sports Medicine, 38(12), 995–1008. https://doi.org/10.2165/00007256-200838120-00004

Hirase, T., Inokuchi, S., Matsusaka, N., & Okita, M. (2015). Effects of a balance training program using a foam rubber pad in community-based older adults: a randomized controlled trial. Journal of Geriatric Physical Therapy, 38(2), 62–70. https://doi.org/10.1519/JPT.0000000000000023

Hodgson, M., Docherty, D., & Robbins, D. (2005). Post-Activation Potentiation. Sports Medicine, 35(7), 585–595. https://doi.org/10.2165/00007256-200535070-00004

Howe, T., Rochester, L., Neil, F., Skelton, D., & Ballinger, C. (2011). Exercise for improving balance in older people. Cochrane Database of Systematic Reviews, 11, CD004963. https://doi.org/10.1002/14651858.CD004963.pub3

Imai, A., Kaneoka, K., Okubo, Y., & Shiraki, H. (2016). Immediate Effects of Different Trunk Exercise Programs on Jump Performance. International Journal of Sports Medicine, 37(3), 197–201. https://doi.org/10.1055/s-0035-1559714

Jirovska, R.; Kay, A., Tsatalas, T., Van Enis, A., Kokkotis, C., Giakas, G., Mina, M. La influencia de la carga inestable y el ejercicio tradicional de sentadilla trasera con peso libre en el rendimiento posterior del salto con contramovimiento. J. Función. Morfol. Kinesiol. 2023 , 8 , 167. https://doi.org/10.3390/jfmk8040167.

Kilduff, L., Bevan, H., Kingsley, M., Owen, N., Bennett, M., Bunce, P., Hore, A., Maw, J., & Cunningham, D. (2007). Postactivation potentiation in professional rugby players: optimal recovery. Journal of Strength and Conditioning Research, 21(4), 1134–1138. https://doi.org/10.1519/R-20996.1

Kohler, J., Flanagan, S., & Whiting, W. (2010). Muscle activation patterns while lifting stable and unstable loads on stable and unstable surfaces. Journal of Strength and Conditioning Research, 24(2), 313–321. https://doi.org/10.1519/JSC.0b013e3181c8655a

Lai, Q. , Gouwanda, D., & Gopalai, A. (2023). Postural Control and Adaptation Strategy of Young Adults on Unstable Surface. Motor Control, 27(2), 179–193. https://doi.org/10.1123/mc.2021-0138

Lee, J., & Kim, J. (2022). Effects of an 8-week lunge exercise on an unstable support surface on lower-extremity muscle function and balance in middle-aged women. Physical activity and nutrition, 26(4), 14–21. https://doi.org/10.20463/pan.2022.0020

Lee, J., Wang, L., & Zhang, X. (2024). Exploring the relationship between core stability and vertical jump in recreational-ly active male college students based on a suite of novel core stability assessments. Heliyon, 10(3), e25236. https://doi.org/10.1016/j.heliyon.2024.e25236

Lim, J, & Kong, P. (2013). Effects of isometric and dynamic postactivation potentiation protocols on maximal sprint per-formance. Journal of Strength and Conditioning Research, 27(10), 2730–2736. https://doi.org/10.1519/JSC.0b013e3182815995

Masamoto, N., Larson, R., Gates, T., & Faigenbaum, A. (2003). Acute Effects of Plyometric Exercise on Maximum Squat Performance in Male Athletes. Journal of Strength and Conditioning Research, 17(1), 68–71. https://doi.org/10.1519/00124278-200302000-00011

McCann, M., & Flanagan, S. (2010). The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. Journal of Strength and Conditioning Research, 24(5), 1285–1291. https://doi.org/10.1519/JSC.0b013e3181d6867c

McLellan, C., Lovell, D., & Gass, G. (2011). The role of rate of force development on vertical jump performance. Journal of Strength and Conditioning Research, 25(2), 379–385. https://doi.org/10.1519/JSC.0b013e3181be305c

Miles, H., Pop, S., Watt, S., Lawrence, G., & John, N. (2012). A review of virtual environments for training in ball sports. Computers & Graphics, 36(6), 714–726. https://doi.org/10.1016/j.cag.2012.04.007

Mueller, S., Stoll, J., Mueller, J., Cassel, M., & Mayer, F. (2017). Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain. Frontiers in Physiology, 8, 274. https://doi.org/10.3389/fphys.2017.00274

Nepocatych, S., Ketcham, C., Vallabhajosula, S., & Balilionis, G. (2018). The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women. The Journal of Sports Medicine and Physical Fitness, 58(1-2), 27–34. https://doi.org/10.23736/S0022-4707.16.06797-9

Ochi, G., Kuwamizu, R., Fujimoto, T., Ikarashi, K., Yamashiro, K., & Sato, D. (2022). The Effects of Acute Virtual Reali-ty Exergaming on Mood and Executive Function: Exploratory Crossover Trial. JMIR Serious Games, 10(3), e38200. https://doi.org/10.2196/38200

Osoba, M., Rao, A., Agrawal, S., & Lalwani, A. (2019). Balance and gait in the elderly: A contemporary review: Balance and Gait in the Elderly. Laryngoscope Investigative Otolaryngology, 4(1), 143–153. https://doi.org/10.1002/lio2.252

Prieske, O., Muehlbauer, T., Krueger, T., Kibele, A., Behm, D., & Granacher, U. (2015). Role of the trunk during drop jumps on stable and unstable surfaces. European Journal of Applied Physiology, 115(1), 139–146. https://doi.org/10.1007/s00421-014-3004-9

Rehn, B., Lidström, J., Skoglund, J., & Lindström, B. (2007). Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scandinavian Journal of Medicine & Science in Sports, 17(1), 2–11. https://doi.org/10.1111/j.1600-0838.2006.00578.x

Richlan, F., Weiß, M., Kastner, P., & Braid, J. (2023). Virtual training, real effects: a narrative review on sports perfor-mance enhancement through interventions in virtual reality. Frontiers in Psychology, 14, 1240790. https://doi.org/10.3389/fpsyg.2023.1240790

Robbins D. (2005). Postactivation potentiation and its practical applicability: a brief review. Journal of Strength and Condi-tioning Research, 19(2), 453–458. https://doi.org/10.1519/R-14653.1

Schilling, J., Murphy, J., Bonney, J., & Thich, J. (2013). Effect of core strength and endurance training on performance in college students: Randomized pilot study. Journal of Bodywork and Movement Therapies, 17(3), 278-290, ISSN 1360-8592. https://doi.org/10.1016/j.jbmt.2012.08.008.

Stein, R., Gordon, T., & Shriver, J. (1982). Temperature dependence of mammalian muscle contractions and ATPase activities. Biophysical Journal, 40(2), 97–107. https://doi.org/10.1016/s0006-3495(82)84464-0

Tillin, N., & Bishop, D. (2009). Factors modulating post-activation potentiation and its effect on performance of subse-quent explosive activities. Sports Medicine, 39(2), 147–166. https://doi.org/10.2165/00007256-200939020-00004

Torvinen, S., Kannus, P., Sievänen, H., Järvinen, T., Pasanen, M., Kontulainen, S., Nenonen, A., Järvinen, T., Paakkala, T., Järvinen, M., & Vuori, I. (2003). Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. Journal of Bone and Mineral Research, 18(5), 876–884. https://doi.org/10.1359/jbmr.2003.18.5.876

Vandervoort, A. , Quinlan, J., & McComas, A. (1983). Twitch potentiation after voluntary contraction. Experimental Neu-rology, 81(1), 141–152. https://doi.org/10.1016/0014-4886(83)90163-2

Wallmann, H., Bell, D., Evans, B., Hyman, A., Goss, G., & Paicely, A. (2019). The Effects of Whole Body Vibration on Vertical Jump, Power, Balance, and Agility in Untrained Adults. International Journal of Sports Physical Therapy, 14(1), 55–64. https://doi.org/10.26603/ijspt20190055

Weber, K., Brown, L., Coburn, J., & Zinder, S. (2008). Acute effects of heavy-load squats on consecutive squat jump performance. Journal of Strength and Conditioning Research, 22(3), 726–730. https://doi.org/10.1519/JSC.0b013e3181660899z

Wilson, J., Duncan, N., Marin, P., Brown, L., Loenneke, J., Wilson, S., Jo, E., Lowery, R. P., & Ugrinowitsch, C. (2013). Meta-Analysis of Postactivation Potentiation and Power. Journal of Strength and Conditioning Research, 27(3), 854–859. https://doi.org/10.1519/jsc.0b013e31825c2bdb

Wood, G., Wright, D., Harris, D., Pal, A., Franklin, Z., & Vine, S. (2020). Testing the construct validity of a soccer-specific virtual reality simulator using novice, academy, and professional soccer players. Virtual Reality, 25(1), 43–51. https://doi.org/10.1007/s10055-020-00441-x

World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

Wyon M. (2010) Preparing to Perform: Periodization and Dance. Journal of Dance Medicine & Science,14(2):67-72. https://doi:10.1177/1089313X1001400205

Xu, W., Liang, H., Baghaei, N., Ma, X., Yu, K., Meng, X., & Wen, S. (2021). Effects of an Immersive Virtual Reality Ex-ergame on University Students’ Anxiety, Depression, and Perceived Stress: Pilot Feasibility and Usability Study. JMIR Serious Games, 9(4), e29330. https://doi.org/10.2196/29330

Zemková E. (2016). Instability resistance training for health and performance. Journal of Traditional and Complementary Medicine, 7(2), 245–250. https://doi.org/10.1016/j.jtcme.2016.05.007

Zemková, E., & Zapletalová, L. (2022). The Role of Neuromuscular Control of Postural and Core Stability in Functional Movement and Athlete Performance. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.796097

Publicado

2024-12-01

Como Citar

Giakoni-Ramírez, F. ., Yañez-Sepúlveda, R., Muñoz-Strale, C., Duclos-Bastías, D., Godoy-Cumillaf, A. ., Melej Elgart, J. P., & Ramírez Facusse, C. (2024). Efeitos da utilização da realidade virtual na instável plataforma ICAROS® na capacidade de salto vertical de estudantes universitários. Retos, 61, 250–259. https://doi.org/10.47197/retos.v61.108073

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>