Efectos del uso de la realidad virtual sobre la plataforma inestable ICAROS® en la capacidad de salto ver-tical de estudiantes universitarios (Effects on vertical jump performance of university students using virtual reality on the ICAROS® unstable platform)

Autores/as

  • Frano Giakoni-Ramírez Facultad de Educación y Ciencias del Deporte, Instituto del Deporte y Bienestar, Universidad Andres Bello, Santiago 7550000, Chile https://orcid.org/0000-0002-2685-8991
  • Rodrigo Yañez-Sepúlveda Facultad de Educación y Ciencias del Deporte, Instituto del Deporte y Bienestar, Universidad Andres Bello, Viña del Mar 2520000, Chile
  • Catalina Muñoz-Strale Facultad de Educación y Ciencias del Deporte, Instituto del Deporte y Bienestar, Universidad Andres Bello, Santiago 7550000, Chile https://orcid.org/0009-0002-5354-1313
  • Daniel Duclos-Bastías Escuela de Educación Física, Pontificia Universidad Católica de Valparaíso,Valparaíso 2374631, Chile https://orcid.org/0000-0002-9020-5776
  • Andrés Godoy-Cumillaf Grupo de Investigación en Educación Física, Salud y Calidad de Vida, Facultad de Educación,Universidad Autónoma de Chile, Temuco 4780000, Chile https://orcid.org/0000-0001-8613-6838
  • Juan Pablo Melej Elgart Feel and Move
  • Cristóbal Ramírez Facusse Feel and Move

DOI:

https://doi.org/10.47197/retos.v61.108073

Palabras clave:

Realidad Virtual, PAPE, PAP, Bases inestables, salto

Resumen

El uso de la realidad virtual y plataformas inestables en el ámbito deportivo ha ganado interés en el último tiempo por su potencial para mejorar el rendimiento físico gracias a la simulación de distintos entornos. En este sentido, es necesario investigar los efectos del ejercicio de alta intensidad utilizando realidad virtual en una plataforma inestable sobre la fuerza de las extremidades inferiores, por lo cual, el objetivo planteado fue identificar el efecto agudo de una sesión de realidad virtual con una plataforma inestable para repetir saltos en estudiantes universitarios. Para la investigación se incluyó una muestra de 268 estudiantes universitarios divididos en tres grupos. Se evaluó la fuerza de las extremidades inferiores a través de saltos, tanto PRE y POST ejercicio. Se observaron diferencias en la altura del Squat Jump (SJ) dentro de tres grupos (F=39.32; p<0.001; d=0.217). En el counter movement jump (CMJ) también se observaron diferencias (F=11.67; p<0.001; d=0.076). No hubo diferencias en la altura de salto abalakov (ABALA) entre los grupos (F=8.73; p<0.001; d=0.058). Sin embargo, no se registraron diferencias entre los grupos antes y posterior a la intervención (p<0.05). El ejercicio de alta intensidad en realidad virtual en una plataforma inestable mejoró la fuerza y la capacidad de salto en estudiantes universitarios, en comparación con un ejercicio similar en una superficie estable. Sin embargo, el grupo ICAROS no mostró mejoras significativas en la altura de los saltos, aunque sí redujo el tiempo de duración entre ciertos saltos en la plataforma inestable. Estos resultados se relacionan con el fenómeno de potenciación postactivación (PAP) después del ejercicio intenso. En conclusión, este estudio sugiere que el ejercicio de alta intensidad usando realidad virtual en una plataforma inestable puede mejorar la fuerza de los miembros inferiores en estudiantes universitarios. Estos hallazgos subrayan el potencial de la realidad virtual como una herramienta innovadora en el entrenamiento deportivo.

Palabras clave: Realidad virtual, plataformas inestables, PAP, PAPE, Icaros Cloud 360

Abstract. The use of virtual reality and unstable platforms in sports has recently gained interest due to its potential to improve physical performance by simulating different environments. In this sense, it is necessary to investigate the effects of high-intensity training using virtual reality on an unstable platform on the strength of the lower extremities, therefore the objective was to determine the acute effect of a virtual reality session with an unstable platform on repetitive jumps in university students. The research involved a sample of 268 university students divided into three groups. Lower limb strength was assessed by jumping, both PRE and POST. Differences in squat jump (SJ) height were observed within the three groups (F=39.32; p<0.001; d=0.217). Differences were also observed in the counter movement jump (CMJ) (F=11.67; p<0.001; d=0.076). There were no differences in Abalakov's jump height (ABALA) between groups (F=8.73; p<0.001; d=0.058). However, there were no differences between groups before and after the intervention (p<0.05). High-intensity virtual reality exercise on an unstable platform improved strength and jumping ability in college students compared to similar exercise on a stable surface. However, the ICAROS group did not show significant improvements in jump height, although they did reduce the time between certain jumps on the unstable platform. These results are related to the phenomenon of post-activation potentiation (PAP) after intense exercise. In conclusion, this study suggests that high-intensity exercise using virtual reality on an unstable platform can improve lower limb strength in college students. These findings highlight the potential of virtual reality as an innovative tool in sports training.

Keywords: Virtual reality, unstable platforms, PAP, PAPE, Icaros Cloud 360

Citas

Arabatzi, F., Kellis, E., & Saèz-Saez De Villarreal, E. (2010). Vertical jump biomechanics after plyometric, weightlifting, and combined (weight lifting + plyometric) training. Journal of strength and conditioning research, 24(9), 2440–2448. https://doi.org/10.1519/JSC.0b013e3181e274ab

Armstrong, W., Grinnell, D., & Warren, S. (2010). The acute effect of whole-body vibration on the vertical jump height. Journal of strength and conditioning research, 24(10), 2835–2839. https://doi.org/10.1519/JSC.0b013e3181e271cc

Bailenson, J. (2018). Experience on demand: What virtual reality is, how it works, and what it can do. WW Norton & Company.

Barroso, R., Silva-Batista, C., Tricoli, V., Roschel, H., & Ugrinowitsch, C. (2013). The effects of different intensities and durations of the general warm-up on leg press 1RM. Journal of strength and conditioning research, 27(4), 1009–1013. https://doi.org/10.1519/JSC.0b013e3182606cd9

Blazevich, A., & Babault, N. (2019). Post-activation Potentiation Versus Post-Activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01359

Bosco, C., Luhtanen, P., & Komi, P. (1983). A simple method for measurement of mechanical power in jumping. Europe-an Journal of Applied Physiology and Occupational Physiology, 50(2), 273–282. https://doi.org/10.1007/bf00422166

Boullosa, D., Beato, M., Dello Iacono, A., Cuenca-Fernández, F., Doma, K., Schumann, M., Zagatto, A., Loturco, I., & Behm, D. (2020). A New Taxonomy for Postactivation Potentiation in Sport. International Journal of Sports Physiology and Performance, 15(8), 1197–1200. https://doi.org/10.1123/ijspp.2020-0350

Boullosa, D., Del Rosso, S., Behm, D., & Foster, C. (2018). Post-activation potentiation (PAP) in endurance sports: A review. European Journal of Sport Science, 18(5), 595–610. https://doi.org/10.1080/17461391.2018.1438519

Cabrejas, C., Solana-Tramunt, M., Morales, J., Campos-Rius, J., Ortegón, A., Nieto-Guisado, A., & Carballeira, E. (2022). The Effect of Eight-Week Functional Core Training on Core Stability in Young Rhythmic Gymnasts: A Ran-domized Clinical Trial. International Journal of Environmental Research and Public Health, 19(6), 3509. https://doi.org/10.3390/ijerph19063509

Chen, Z., Lo, S., Wang, M., Yu, C., & Peng, H. (2017). Can Different Complex Training Improve the Individual Phenom-enon of Post-Activation Potentiation?. Journal of Human Kinetics, 56, 167–175. https://doi.org/10.1515/hukin-2017-0034

Cochrane, D., Legg, S., & Hooker, M. (2004). The short-term effect of whole-body vibration training on vertical jump, sprint, and agility performance. Journal of Strength and Conditioning Research, 18(4), 828–832. https://doi.org/10.1519/14213.1

Cochrane, D., Stannard, S., Sargeant, A., & Rittweger, J. (2008). The rate of muscle temperature increases during acute whole-body vibration exercise. European Journal of Applied Physiology, 103(4), 441–448. https://doi.org/10.1007/s00421-008-0736-4

Colson, S., Pensini, M., Espinosa, J., Garrandes, F., & Legros, P. (2010). Whole-body vibration training effects on the physical performance of basketball players. Journal of Strength and Conditioning Research, 24(4), 999–1006. https://doi.org/10.1519/JSC.0b013e3181c7bf10

Comyns, T., Harrison, A., Hennessy, L., & Jensen, R. (2006). The optimal complex training rest interval for athletes from anaerobic sports. Journal of Strength and Conditioning Research, 20(3), 471–476. https://doi.org/10.1519/18445.1

Cormie, P., Deane, R., Triplett, N., & McBride, J. (2006). Acute effects of whole-body vibration on muscle activity, strength, and power. Journal of Strength and Conditioning Research, 20(2), 257–261. https://doi.org/10.1519/R-17835.1

Cormie, P., McGuigan, M., & Newton, R. (2011). Developing Maximal Neuromuscular Power. Sports Medicine, 41(1), 17–38. https://doi.org/10.2165/11537690-000000000-00000

Cuenca-Fernández, F., Smith, I., Jordan, M., MacIntosh, B., López-Contreras, G., Arellano, R., & Herzog, W. (2017). Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: a pilot study. Applied Physiol-ogy, Nutrition, and Metabolism, 42(10), 1122–1125. https://doi.org/10.1139/apnm-2017-0217

Davoodi, B., Arshadi, S., & Bouri, S. Z. (2010). Effect of whole body vibrations on performance indexes of aerobic power and flexibility in non-athlete men. British Journal of Sports Medicine, 44(Suppl 1), i10.3-i10. https://doi.org/10.1136/bjsm.2010.078725.28

de Keijzer, K., McErlain-Naylor, S., Dello Iacono, A., & Beato, M. (2020). Effect of Volume on Eccentric Overload–Induced Postactivation Potentiation of Jumps. International Journal of Sports Physiology and Performance, 15(7), 976–981. https://doi.org/10.1123/ijspp.2019-0411

Edman, K., & Andersson, K. (1968). The variation in active tension with sarcomere length in vertebrate skeletal muscle and its relation to fibre width. Experientia, 24(2), 134–136. https://doi.org/10.1007/bf02146942

Faure, C., Limballe, A., Bideau, B., & Kulpa, R. (2020). Virtual reality to assess and train team ball sports performance: A scoping review. Journal of Sports Sciences, 38(2), 192–205. https://doi.org/10.1080/02640414.2019.1689807

Ferri-Caruana, A., Prades-Insa, B., & Serra-Añó, P. (2020). Effects of pelvic and core strength training on biomechanical risk factors for anterior cruciate ligament injuries. The Journal of Sports Medicine and Physical Fitness, 60(8), 1128–1136. https://doi.org/10.23736/S0022-4707.20.10552-8

Franklin, D., Osu, R., Burdet, E., Kawato, M., & Milner, T. (2003). Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model. Journal of Neurophysiology, 90(5), 3270–3282. https://doi.org/10.1152/jn.01112.2002

Folland, J., Wakamatsu, T., & Fimland, M. (2008). The influence of maximal isometric activity on twitch and H-reflex potentiation, and quadriceps femoris performance. European Journal of Applied Physiology, 104(4), 739–748. https://doi.org/10.1007/s00421-008-0823-6.

French, D., Kraemer, W., & Cooke, C. (2003). Changes in Dynamic Exercise Performance Following a Sequence of Pre-conditioning Isometric Muscle Actions. Journal of Strength and Conditioning Research, 17(4), 678–685. https://doi.org/10.1519/00124278-200311000-00009

Giakoni-Ramírez, F., Godoy-Cumillaf, A., Fuentes-Merino, P., Farías-Valenzuela, C., Duclos-Bastías, D., Bruneau-Chávez, J., Merellano-Navarro, E., & Velásquez-Olavarría, R. (2023). Intensity of a Physical Exercise Programme Executed through Immersive Virtual Reality. Healthcare, 11(17), 2399. https://doi.org/10.3390/healthcare11172399

Greengard, S. (2019). Virtual Reality. The MIT Press Essential Knowledge Series https://doi.org/10.7551/mitpress/11836.001.0001

Guo, L., Wu, Y., & Li, L. (2020). Dynamic Core Flexion Strength is Important for Using Arm-Swing to Improve Coun-termovement Jump Height. Applied Sciences, 10(21), 7676. https://doi.org/10.3390/app10217676

Hamada, T., Sale, D., MacDougall, J., & Tarnopolsky, M. (2000). Postactivation potentiation, fiber type, and twitch con-traction time in human knee extensor muscles. Journal of Applied Physiology, 88(6), 2131–2137. https://doi.org/10.1152/jappl.2000.88.6.2131

Hawkey, A. (2012). Whole body vibration training improves muscular power in a recreationally active population. Sportlogia, 8(2), 116–122. https://doi.org/10.5550/sgia.120802.en.116h

Hibbs, A., Thompson, K., French, D., Wrigley, A., & Spears, I. (2008). Optimizing Performance by Improving Core Sta-bility and Core Strength. Sports Medicine, 38(12), 995–1008. https://doi.org/10.2165/00007256-200838120-00004

Hirase, T., Inokuchi, S., Matsusaka, N., & Okita, M. (2015). Effects of a balance training program using a foam rubber pad in community-based older adults: a randomized controlled trial. Journal of Geriatric Physical Therapy, 38(2), 62–70. https://doi.org/10.1519/JPT.0000000000000023

Hodgson, M., Docherty, D., & Robbins, D. (2005). Post-Activation Potentiation. Sports Medicine, 35(7), 585–595. https://doi.org/10.2165/00007256-200535070-00004

Howe, T., Rochester, L., Neil, F., Skelton, D., & Ballinger, C. (2011). Exercise for improving balance in older people. Cochrane Database of Systematic Reviews, 11, CD004963. https://doi.org/10.1002/14651858.CD004963.pub3

Imai, A., Kaneoka, K., Okubo, Y., & Shiraki, H. (2016). Immediate Effects of Different Trunk Exercise Programs on Jump Performance. International Journal of Sports Medicine, 37(3), 197–201. https://doi.org/10.1055/s-0035-1559714

Jirovska, R.; Kay, A., Tsatalas, T., Van Enis, A., Kokkotis, C., Giakas, G., Mina, M. La influencia de la carga inestable y el ejercicio tradicional de sentadilla trasera con peso libre en el rendimiento posterior del salto con contramovimiento. J. Función. Morfol. Kinesiol. 2023 , 8 , 167. https://doi.org/10.3390/jfmk8040167.

Kilduff, L., Bevan, H., Kingsley, M., Owen, N., Bennett, M., Bunce, P., Hore, A., Maw, J., & Cunningham, D. (2007). Postactivation potentiation in professional rugby players: optimal recovery. Journal of Strength and Conditioning Research, 21(4), 1134–1138. https://doi.org/10.1519/R-20996.1

Kohler, J., Flanagan, S., & Whiting, W. (2010). Muscle activation patterns while lifting stable and unstable loads on stable and unstable surfaces. Journal of Strength and Conditioning Research, 24(2), 313–321. https://doi.org/10.1519/JSC.0b013e3181c8655a

Lai, Q. , Gouwanda, D., & Gopalai, A. (2023). Postural Control and Adaptation Strategy of Young Adults on Unstable Surface. Motor Control, 27(2), 179–193. https://doi.org/10.1123/mc.2021-0138

Lee, J., & Kim, J. (2022). Effects of an 8-week lunge exercise on an unstable support surface on lower-extremity muscle function and balance in middle-aged women. Physical activity and nutrition, 26(4), 14–21. https://doi.org/10.20463/pan.2022.0020

Lee, J., Wang, L., & Zhang, X. (2024). Exploring the relationship between core stability and vertical jump in recreational-ly active male college students based on a suite of novel core stability assessments. Heliyon, 10(3), e25236. https://doi.org/10.1016/j.heliyon.2024.e25236

Lim, J, & Kong, P. (2013). Effects of isometric and dynamic postactivation potentiation protocols on maximal sprint per-formance. Journal of Strength and Conditioning Research, 27(10), 2730–2736. https://doi.org/10.1519/JSC.0b013e3182815995

Masamoto, N., Larson, R., Gates, T., & Faigenbaum, A. (2003). Acute Effects of Plyometric Exercise on Maximum Squat Performance in Male Athletes. Journal of Strength and Conditioning Research, 17(1), 68–71. https://doi.org/10.1519/00124278-200302000-00011

McCann, M., & Flanagan, S. (2010). The effects of exercise selection and rest interval on postactivation potentiation of vertical jump performance. Journal of Strength and Conditioning Research, 24(5), 1285–1291. https://doi.org/10.1519/JSC.0b013e3181d6867c

McLellan, C., Lovell, D., & Gass, G. (2011). The role of rate of force development on vertical jump performance. Journal of Strength and Conditioning Research, 25(2), 379–385. https://doi.org/10.1519/JSC.0b013e3181be305c

Miles, H., Pop, S., Watt, S., Lawrence, G., & John, N. (2012). A review of virtual environments for training in ball sports. Computers & Graphics, 36(6), 714–726. https://doi.org/10.1016/j.cag.2012.04.007

Mueller, S., Stoll, J., Mueller, J., Cassel, M., & Mayer, F. (2017). Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain. Frontiers in Physiology, 8, 274. https://doi.org/10.3389/fphys.2017.00274

Nepocatych, S., Ketcham, C., Vallabhajosula, S., & Balilionis, G. (2018). The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women. The Journal of Sports Medicine and Physical Fitness, 58(1-2), 27–34. https://doi.org/10.23736/S0022-4707.16.06797-9

Ochi, G., Kuwamizu, R., Fujimoto, T., Ikarashi, K., Yamashiro, K., & Sato, D. (2022). The Effects of Acute Virtual Reali-ty Exergaming on Mood and Executive Function: Exploratory Crossover Trial. JMIR Serious Games, 10(3), e38200. https://doi.org/10.2196/38200

Osoba, M., Rao, A., Agrawal, S., & Lalwani, A. (2019). Balance and gait in the elderly: A contemporary review: Balance and Gait in the Elderly. Laryngoscope Investigative Otolaryngology, 4(1), 143–153. https://doi.org/10.1002/lio2.252

Prieske, O., Muehlbauer, T., Krueger, T., Kibele, A., Behm, D., & Granacher, U. (2015). Role of the trunk during drop jumps on stable and unstable surfaces. European Journal of Applied Physiology, 115(1), 139–146. https://doi.org/10.1007/s00421-014-3004-9

Rehn, B., Lidström, J., Skoglund, J., & Lindström, B. (2007). Effects on leg muscular performance from whole-body vibration exercise: a systematic review. Scandinavian Journal of Medicine & Science in Sports, 17(1), 2–11. https://doi.org/10.1111/j.1600-0838.2006.00578.x

Richlan, F., Weiß, M., Kastner, P., & Braid, J. (2023). Virtual training, real effects: a narrative review on sports perfor-mance enhancement through interventions in virtual reality. Frontiers in Psychology, 14, 1240790. https://doi.org/10.3389/fpsyg.2023.1240790

Robbins D. (2005). Postactivation potentiation and its practical applicability: a brief review. Journal of Strength and Condi-tioning Research, 19(2), 453–458. https://doi.org/10.1519/R-14653.1

Schilling, J., Murphy, J., Bonney, J., & Thich, J. (2013). Effect of core strength and endurance training on performance in college students: Randomized pilot study. Journal of Bodywork and Movement Therapies, 17(3), 278-290, ISSN 1360-8592. https://doi.org/10.1016/j.jbmt.2012.08.008.

Stein, R., Gordon, T., & Shriver, J. (1982). Temperature dependence of mammalian muscle contractions and ATPase activities. Biophysical Journal, 40(2), 97–107. https://doi.org/10.1016/s0006-3495(82)84464-0

Tillin, N., & Bishop, D. (2009). Factors modulating post-activation potentiation and its effect on performance of subse-quent explosive activities. Sports Medicine, 39(2), 147–166. https://doi.org/10.2165/00007256-200939020-00004

Torvinen, S., Kannus, P., Sievänen, H., Järvinen, T., Pasanen, M., Kontulainen, S., Nenonen, A., Järvinen, T., Paakkala, T., Järvinen, M., & Vuori, I. (2003). Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. Journal of Bone and Mineral Research, 18(5), 876–884. https://doi.org/10.1359/jbmr.2003.18.5.876

Vandervoort, A. , Quinlan, J., & McComas, A. (1983). Twitch potentiation after voluntary contraction. Experimental Neu-rology, 81(1), 141–152. https://doi.org/10.1016/0014-4886(83)90163-2

Wallmann, H., Bell, D., Evans, B., Hyman, A., Goss, G., & Paicely, A. (2019). The Effects of Whole Body Vibration on Vertical Jump, Power, Balance, and Agility in Untrained Adults. International Journal of Sports Physical Therapy, 14(1), 55–64. https://doi.org/10.26603/ijspt20190055

Weber, K., Brown, L., Coburn, J., & Zinder, S. (2008). Acute effects of heavy-load squats on consecutive squat jump performance. Journal of Strength and Conditioning Research, 22(3), 726–730. https://doi.org/10.1519/JSC.0b013e3181660899z

Wilson, J., Duncan, N., Marin, P., Brown, L., Loenneke, J., Wilson, S., Jo, E., Lowery, R. P., & Ugrinowitsch, C. (2013). Meta-Analysis of Postactivation Potentiation and Power. Journal of Strength and Conditioning Research, 27(3), 854–859. https://doi.org/10.1519/jsc.0b013e31825c2bdb

Wood, G., Wright, D., Harris, D., Pal, A., Franklin, Z., & Vine, S. (2020). Testing the construct validity of a soccer-specific virtual reality simulator using novice, academy, and professional soccer players. Virtual Reality, 25(1), 43–51. https://doi.org/10.1007/s10055-020-00441-x

World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

Wyon M. (2010) Preparing to Perform: Periodization and Dance. Journal of Dance Medicine & Science,14(2):67-72. https://doi:10.1177/1089313X1001400205

Xu, W., Liang, H., Baghaei, N., Ma, X., Yu, K., Meng, X., & Wen, S. (2021). Effects of an Immersive Virtual Reality Ex-ergame on University Students’ Anxiety, Depression, and Perceived Stress: Pilot Feasibility and Usability Study. JMIR Serious Games, 9(4), e29330. https://doi.org/10.2196/29330

Zemková E. (2016). Instability resistance training for health and performance. Journal of Traditional and Complementary Medicine, 7(2), 245–250. https://doi.org/10.1016/j.jtcme.2016.05.007

Zemková, E., & Zapletalová, L. (2022). The Role of Neuromuscular Control of Postural and Core Stability in Functional Movement and Athlete Performance. Frontiers in Physiology, 13. https://doi.org/10.3389/fphys.2022.796097

Descargas

Publicado

2024-12-01

Cómo citar

Giakoni-Ramírez, F. ., Yañez-Sepúlveda, R., Muñoz-Strale, C., Duclos-Bastías, D., Godoy-Cumillaf, A. ., Melej Elgart, J. P., & Ramírez Facusse, C. (2024). Efectos del uso de la realidad virtual sobre la plataforma inestable ICAROS® en la capacidad de salto ver-tical de estudiantes universitarios (Effects on vertical jump performance of university students using virtual reality on the ICAROS® unstable platform). Retos, 61, 250–259. https://doi.org/10.47197/retos.v61.108073

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

<< < 1 2