A proposal for the evaluation of Digital Educational Resources through the longitudinal fsQCA methodology
PDF (Español/English) (Español (España))
HTML (Español (España))

Métricas alternativas

Funding data

Metrics

Keywords

Aula invertida
recursos educativos digitales
resultado académico
fsQCA longitudinal
enseñanza superior Flipped classroom
digital educational resources
academic performance
longitudinal fsQCA
higher education

How to Cite

Mendaña-Cuervo, C., Remo-Diez, N., & López-González, E. (2024). A proposal for the evaluation of Digital Educational Resources through the longitudinal fsQCA methodology. Pi­xel-Bit. Media and Education Journal, (69), 195–226. https://doi.org/10.12795/pixelbit.100000

Abstract

The use of Information and Communication Technologies in the teaching field has led to the proliferation of Digital Educational Resources (DERs) that seek to promote autonomous and asynchronous learning by students and, in turn, to improve academic results. However, in few cases the impact of these resources on the learning process was evaluated.

In this paper, the fsQCA methodology is proposed to establish the combinations of DERs that facilitate better student performance, as opposed to methodologies based on the study of the net effects of each resource. The work is complemented with an analysis for several academic years through the longitudinal fsQCA methodology, which facilitates an analysis over time, providing a dynamic view of the opportunity and relevance of the DERs. The results suggest that there is no single combination of DERs that leads to success, but rather that using these resources in different ways in combination allows students to achieve their academic goals, concluding that the methodology proposed can be useful for the evaluation of DERs regardless of their typology.

https://doi.org/10.12795/pixelbit.100000
PDF (Español/English) (Español (España))
HTML (Español (España))

References

Barhate, B., & Dirani, K. M. (2022). Career aspirations of generation Z: a systematic literature review. European Journal of Training and Development, 46(1/2), 139–157. https://doi.org/10.1108/EJTD-07-2020-0124

Bendjebar, S., Djebarnia, N. E. I., Mehenaoui, Z., & Lafifi, Y. (2023). Recommendation of pedagogical resources based on learners’ profiles. International Journal of Informatics and Applied Mathematics. https://doi.org/10.53508/ijiam.1213949

Bergmann, J., & Sams, A. (2012). Flip Your Classroom: Reach Every Student in Every Class Every Day. International Society for Technology in Education.

Campbell, J. T., Sirmon, D. G., & Schijven, M. (2015). Fuzzy Logic and the Market: A Configurational Approach to Investor Perceptions of Acquisition Announcements. Academy of Management Journal, 59(1), 163–187. https://doi.org/10.5465/amj.2013.0663

Cickovska, E. (2020). Understanding and Teaching Gen Z in Higher Education. Horizons Serie A, 26, 275–290. https://doi.org/10.20544/HORIZONS.A.26.3.20.P22

Di Meo, F., & Martí-Ballester, C.-P. (2020). Effects of the perceptions of online quizzes and electronic devices on student performance. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.4888

Drozdikova-Zaripova, A. R., & Sabirova, E. G. (2020). Usage of Digital Educational Resources in Teaching Students with Application of “Flipped Classroom” Technology. Contemporary Educational Technology, 12(2), ep278. https://doi.org/10.30935/cedtech/8582

Estrada-Molina, O., Fuentes-Cancell, D. R., & Morales, A. A. (2022). The assessment of the usability of digital educational resources: An interdisciplinary analysis from two systematic reviews. Education and Information Technologies, 27(3), 4037–4063. https://doi.org/10.1007/s10639-021-10727-5

Federo, R., & Saz-Carranza, A. (2018). A configurational analysis of board involvement in intergovernmental organizations. Corporate Governance: An International Review, 26(6), 414–428. https://doi.org/https://doi.org/10.1111/corg.12241

Ferrando Rodríguez, L., Gabarda-Mendez, V., Marin Suelves, D., & Ramón-Llin Más, J. (2023). ¿Crea contenidos digitales el profesorado universitario? Un diseño mixto de investigación. Pixel-Bit. Revista de Medios y Educación, 66, 137–172. https://doi.org/10.12795/pixelbit.96309

Fiss, P. C. (2011). Building better causal theories: A fuzzy set approach to typologies in organizational research. Academy of Management Journal, 54, 393–420. https://doi.org/10.5465/AMJ.2011.60263120

Greckhamer, T., Misangyi, V. F., & Fiss, P. C. (2013). Chapter 3 The Two QCAs: From a Small-N to a Large-N Set Theoretic Approach. In P. C. Fiss, B. Cambré, & A. Marx (Eds.), Configurational Theory and Methods in Organizational Research (Vol. 38, pp. 49–75). Emerald Group Publishing Limited. https://doi.org/10.1108/S0733-558X(2013)0000038007

Gutiérrez-González, C., Montero, L., Espitia, L., & Torres, Y. (2023). Análisis de la producción científica relacionada con Recursos Educativos Digitales (RED) y Objetos Virtuales de Aprendizaje (OVA), entre 2000 – 2021. Revista de Investigación Educativa, 41(1), 263–280. https://doi.org/10.6018/rie.518741

Hasan, R., Palaniappan, S., Mahmood, S., Abbas, A., Sarker, K. U., & Sattar, M. U. (2020). Predicting Student Performance in Higher Educational Institutions Using Video Learning Analytics and Data Mining Techniques. Applied Sciences, 10(11), 3894. https://doi.org/10.3390/app10113894

Haxhi, I., & Aguilera, R. V. (2017). An Institutional Configurational Approach to Cross-National Diversity in Corporate Governance. Journal of Management Studies, 54(3), 261–303. https://doi.org/https://doi.org/10.1111/joms.12247

Kirschner, P. A., & De Bruyckere, P. (2017). The myths of the digital native and the multitasker. Teaching and Teacher Education, 67, 135–142. https://doi.org/10.1016/J.TATE.2017.06.001

Latif, E., & Miles, S. (2020). The Impact of Assignments and Quizzes on Exam Grades: A Difference-in-Difference Approach. Journal of Statistics Education, 28(3), 289–294. https://doi.org/10.1080/10691898.2020.1807429

Maquilón Sánchez, J. J., Mirete Ruz, A. B., García Sánchez, F. A., & Hernández Pina, F. (2013). Valoración de las TIC por los estudiantes universitarios y su relación con los enfoques de aprendizaje. Revista de Investigación Educativa, 31(2), 537–554. https://doi.org/10.6018/rie.31.2.151891

Ndiyae, N. M., Chaabi, Y., Lekdioui, K., & Lishou, C. (2019). Recommending system for digital educational resources based on learning analysis. Proceedings of the New Challenges in Data Sciences: Acts of the Second Conference of the Moroccan Classification Society. https://api.semanticscholar.org/CorpusID:85519277

Noetel, M., Griffith, S., Delaney, O., Sanders, T., Parker, P., del Pozo Cruz, B., & Lonsdale, C. (2021). Video Improves Learning in Higher Education: A Systematic Review. Review of Educational Research, 91(2), 204–236. https://doi.org/10.3102/0034654321990713

Okike, E. U., & Mogorosi, M. (2020). Educational Data Mining for Monitoring and Improving Academic Performance at University Levels. International Journal of Advanced Computer Science and Applications, 11(11). https://doi.org/10.14569/IJACSA.2020.0111171

Pappas, I. O., & Woodside, A. G. (2021). Fuzzy-set Qualitative Comparative Analysis (fsQCA): Guidelines for research practice in Information Systems and marketing. International Journal of Information Management, 58, 102310. https://doi.org/10.1016/J.IJINFOMGT.2021.102310

Pérez de Albéniz Iturriaga, A., Escolano Pérez, E., Pascual Sufrate, M. T., Lucas Molina, B., & Sastre i Riba, S. (2015). Metacognición en un proceso de aprendizaje autónomo y cooperativo en el aula universitaria. Contextos Educativos, 18, 95–108. https://doi.org/10.18172/con.2576

Prensky, M. (2001). Digital Natives, Digital Immigrants Part 1. On the Horizon, 9(5), 1–6. https://doi.org/10.1108/10748120110424816

Ragin, C. C. (2000). Fuzzy-Set Social Science. University of Chicago Press.

Ragin, C. C. (2008). Redesigning Social Inquiry: Fuzzy Sets and Beyond. University of Chicago Press. https://doi.org/10.7208/chicago/9780226702797.001.0001

Ragin, C. C., & Davey, S. (2022). Fuzzy-set/Qualitative comparative analysis 4.0. In Department of Sociology, University of California. http://www.socsci.uci.edu/~cragin/fsQCA/software.shtml

Ragin, C. C., & Rihoux, B. (2004). Qualitative Comparative Analysis (QCA): State of the Art and Prospects. Qualitative Methods, 3–13. https://doi.org/10.5281/zenodo.998222

Rozo, H., & Real, M. (2019). Pedagogical guidelines for the creation of adaptive digital educational resources: A review of the literature. Journal of Technology and Science Education, 9(3), 308. https://doi.org/10.3926/jotse.652

Russo, I., & Confente, I. (2019). From dataset to qualitative comparative analysis (QCA)—Challenges and tricky points: A research note on contrarian case analysis and data calibration. Australasian Marketing Journal, 27(2), 129–135. https://doi.org/https://doi.org/10.1016/j.ausmj.2018.11.001

Schneider, C. Q., & Wagemann, C. (2010). Standards of Good Practice in Qualitative Comparative Analysis (QCA) and Fuzzy-Sets. Comparative Sociology, 9(3), 397–418. https://doi.org/https://doi.org/10.1163/156913210X12493538729793

Schwieger, D., & Ladwig, C. (2018). Reaching and Retaining the Next Generation: Adapting to the Expectations of Gen Z in the Classroom. Information Systems Education Journal, 3, 16. http://iscap.info;http://isedj.org

Segura-Robles, A., Parra-González, M., & Gallardo-Vigil, M. (2020). Bibliometric and Collaborative Network Analysis on Active Methodologies in Education. Journal of New Approaches in Educational Research, 9(2), 259–274.

Soffer, T., & Cohen, A. (2019). Students’ engagement characteristics predict success and completion of online courses. Journal of Computer Assisted Learning, 35(3), 378–389. https://doi.org/10.1111/jcal.12340

Sotola, L. K., & Crede, M. (2021). Regarding Class Quizzes: a Meta-analytic Synthesis of Studies on the Relationship Between Frequent Low-Stakes Testing and Class Performance. Educational Psychology Review, 33(2), 407–426. https://doi.org/10.1007/s10648-020-09563-9

Woodside, A. G. (2013). Moving beyond multiple regression analysis to algorithms: Calling for a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. Journal of Business Research, 66, 463–472. https://doi.org/10.1016/j.jbusres.2012.12.021

Woodside, A. G. (2014). Embrace perform model: Complexity theory, contrarian case analysis, and multiple realities. Journal of Business Research, 67(12), 2495–2503. https://doi.org/10.1016/j.jbusres.2014.07.006

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2023 Pi­xel-Bit. Media and Education Journal

Downloads

Download data is not yet available.