Reabilitação física e seus avanços com realidade virtual: uma revisão sistemática
DOI:
https://doi.org/10.47197/retos.v60.109195Palavras-chave:
Realidade virtual, Reabilitação física, Função motora, Eficácia terapêutica, Inovação tecnológicaResumo
A reabilitação física (FR) é crucial para tratar e recuperar pacientes com deficiências motoras causadas por condições como acidente vascular cerebral e lesões musculoesqueléticas. As técnicas convencionais de RF têm limitações de acessibilidade, motivação do paciente e personalização do tratamento. A realidade virtual (RV) emergiu como uma ferramenta promissora que pode transformar a RF ao criar ambientes imersivos e personalizados, aumentando a motivação dos pacientes e fornecendo dados precisos sobre o seu progresso.
Este estudo foi conduzido como uma revisão sistemática da literatura recente (2015-2023) para avaliar a eficácia da RV em RF. As diretrizes PRISMA foram seguidas, abrangendo estudos randomizados controlados e ensaios clínicos no Scopus e PubMed. As análises incluíram a Escala de Jadad para avaliar a qualidade metodológica, a ferramenta Cochrane para risco de viés e GRADE para qualidade de evidência. A diretriz JAMA foi aplicada a estudos observacionais para avaliar a validade interna e externa.
Os resultados mostraram que a RV melhora significativamente a função motora, flexibilidade, coordenação, mobilidade e qualidade de vida em comparação com a reabilitação convencional. A maioria dos estudos obteve pontuações altas na Escala de Jadad e qualidade moderada a alta no GRADE, indicando força da evidência. Contudo, foram identificadas limitações como a heterogeneidade dos estudos e a falta de cegamento. Conclui-se que a RV tem potencial para revolucionar a FR, melhorando os resultados terapêuticos e a qualidade de vida dos pacientes.
Palavras-chave: Realidade virtual, Reabilitação física, Função motora, Eficácia terapêutica, Inovação tecnológica
Referências
Adamovich, S. V., Fluet, G. G., Tunik, E., & Merians, A. S. (2009). Sensorimotor training in virtual reality: A re-view. NeuroRehabilitation, 25(1), 29-44. https://doi.org/10.3233/NRE-2009-0497
Arnoni, J. L. B., Kleiner, A. F. R., Lima, C. R. G., de Campos, A. C., & Rocha, N. A. C. F. (2021). Nonimmersive Virtual Reality as Complementary Rehabilitation on Functional Mobility and Gait in Cerebral Palsy: A Randomized Controlled Clinical Trial. Games for Health Journal, 10(4), 254-263. https://doi.org/10.1089/g4h.2021.0009
Bisson, E., Contant, B., Sveistrup, H., & Lajoie., Y. (2007). Functional Balance and Dual-Task Reaction Times in Older Adults Are Improved by Virtual Reality and Biofeedback Training. CyberPsychology & Behavior, 10(1), 16-23. https://doi.org/10.1089/cpb.2006.9997
Brox, E., Fernandez-Luque, L., Evertsen, G., & González-Hernández, J. (2011). Exergames For Elderly: Social exer-games to persuade seniors to increase physical activity. Proceedings of the 5th International ICST Conference on Pervasive Computing Technologies for Healthcare. 5th International ICST Conference on Pervasive Computing Technologies for Healthcare, Dublin, Republic of Ireland. https://doi.org/10.4108/icst.pervasivehealth.2011.246049
Burdea, G. C. (2003). Virtual rehabilitation—Benefits and challenges. Methods of Information in Medicine, 42(5), 519-523.
Cameron, M. H. (2012). Physical Agents in Rehabilitation: From Research to Practice. Elsevier Health Sciences.
Campo-Prieto, P., Cancela-Carral, J. M., Alsina-Rey, B., & Rodríguez-Fuentes, G. (2022). Immersive Virtual Reality as a Novel Physical Therapy Approach for Nonagenarians: Usability and Effects on Balance Outcomes of a Game-Based Exercise Program. Journal of Clinical Medicine, 11(13), 3911. https://doi.org/10.3390/jcm11133911
Campo-Prieto, P., Cancela-Carral, J. M., & Rodríguez-Fuentes, G. (2022). Wearable Immersive Virtual Reality Device for Promoting Physical Activity in Parkinson’s Disease Patients. Sensors, 22(9), 3302. https://doi.org/10.3390/s22093302
Chang, Y.-J., Chen, S.-F., & Huang, J.-D. (2011). A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities, 32(6), 2566-2570. https://doi.org/10.1016/j.ridd.2011.07.002
Choukou, M.-A., He, E., & Moslenko, K. (2023). Feasibility of a Virtual-Reality-Enabled At-Home Telerehabilitation Program for Stroke Survivors: A Case Study. Journal of Personalized Medicine, 13(8), 1230. https://doi.org/10.3390/jpm13081230
Corbetta, D., Imeri, F., & Gatti, R. (2015). Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. Journal of Physio-therapy, 61(3), 117-124. https://doi.org/10.1016/j.jphys.2015.05.017
Crosbie, J. H., Lennon, S., Basford, J. R., & McDonough, S. M. (2007). Virtual reality in stroke rehabilitation: Still more virtual than real. Disability and Rehabilitation, 29(14), 1139-1146. https://doi.org/10.1080/09638280600960909
Cruz-Neira, C., Sandin, D. J., & DeFanti, T. A. (1993). Surround-screen projection-based virtual reality: The design and implementation of the CAVE. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Tech-niques, 135-142. https://doi.org/10.1145/166117.166134
DeLisa, J. A., & Gans, B. M. (1998). Rehabilitation Medicine: Principles and Practice. Lippincott-Raven.
Feng, H., Li, C., Liu, J., Wang, L., Ma, J., Li, G., ... Wu, Z. (2019). Virtual Reality Rehabilitation Versus Conventional Physical Therapy for Improving Balance and Gait in Parkinson’s Disease Patients: A Randomized Controlled Trial. Medical Science Monitor, 25, 4186-4192. https://doi.org/10.12659/MSM.916455
Garay-Sánchez, A., Marcén-Román, Y., Ferrando-Margelí, M., Franco-Sierra, M. Á., & Suarez-Serrano, C. (2023). Effect of Physiotherapy Treatment with Immersive Virtual Reality in Subjects with Stroke: A Protocol for a Random-ized Controlled Trial. Healthcare, 11(9), 1335. https://doi.org/10.3390/healthcare11091335
Gouveia, É. R., Campos, P., França, C. S., Rodrigues, L. M., Martins, F., França, C., ... Gouveia, B. R. (2023). Virtual Reality Gaming in Rehabilitation after Musculoskeletal Injury—User Experience Pilot Study. Applied Sciences, 13(4), 2523. https://doi.org/10.3390/app13042523
Holden, M. K. (2005). Virtual Environments for Motor Rehabilitation: Review. CyberPsychology & Behavior, 8(3), 187-211. https://doi.org/10.1089/cpb.2005.8.187
Ikbali Afsar, S., Mirzayev, I., Umit Yemisci, O., & Cosar Saracgil, S. N. (2018). Virtual Reality in Upper Extremity Rehabilitation of Stroke Patients: A Randomized Controlled Trial. Journal of Stroke and Cerebrovascular Diseases, 27(12), 3473-3478. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.007
Kashif, M., Ahmad, A., Bandpei, M. A. M., Gilani, S. A., Hanif, A., & Iram, H. (2022). Combined effects of virtual reality techniques and motor imagery on balance, motor function and activities of daily living in patients with Parkin-son’s disease: A randomized controlled trial. BMC Geriatrics, 22(1), 381. https://doi.org/10.1186/s12877-022-03035-1
Kayes, N. M., McPherson, K. M., Taylor, D., Schlüter, P. J., & Kolt, G. S. (2011). Facilitators and barriers to engage-ment in physical activity for people with multiple sclerosis: A qualitative investigation. Disability and Rehabilita-tion, 33(8), 625-642. https://doi.org/10.3109/09638288.2010.505992
Keshner, E. A. (2004). Virtual reality and physical rehabilitation: A new toy or a new research and rehabilitation tool? Journal of NeuroEngineering and Rehabilitation, 1(1), 8. https://doi.org/10.1186/1743-0003-1-8
Laver, K. E., Adey-Wakeling, Z., Crotty, M., Lannin, N. A., George, S., & Sherrington, C. (2020). Telerehabilitation services for stroke. Cochrane Database of Systematic Re-views, 2020(1). https://doi.org/10.1002/14651858.CD010255.pub3
Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabil-itation. Cochrane Database of Systematic Reviews, 2018(1). https://doi.org/10.1002/14651858.CD008349.pub4
Laver, K., George, S., Thomas, S., Deutsch, J. E., & Crotty, M. (2012). Cochrane review: Virtual reality for stroke rehabilitation. European Journal of Physical and Rehabilitation Medicine, 48(3), 523-530.
Lee, J.-A., Kim, J.-G., & Kweon, H. (2023). A Study on Rehabilitation Specialists’ Perception of Experience with a Virtual Reality Program. Healthcare, 11(6), 814. https://doi.org/10.3390/healthcare11060814
Liao, Y.-Y., Tseng, H.-Y., Lin, Y.-J., Wang, C.-J., & Hsu, W.-C. (2020). Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive im-pairment. European Journal of Physical and Rehabilitation Medicine, 56(1). https://doi.org/10.23736/S1973-9087.19.05899-4
Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E., & Weiller, C. (2000). Treatment-Induced Cortical Reorganization After Stroke in Humans. Stroke, 31(6), 1210-1216. https://doi.org/10.1161/01.STR.31.6.1210
Lloréns, R., Noé, E., Colomer, C., & Alcañiz, M. (2015). Effectiveness, Usability, and Cost-Benefit of a Virtual Reality–Based Telerehabilitation Program for Balance Recovery After Stroke: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 96(3), 418-425.e2. https://doi.org/10.1016/j.apmr.2014.10.019
Lohse, K. R., Hilderman, C. G. E., Cheung, K. L., Tatla, S., Van Der Loos, H. F. M. (2014). Virtual Reality Therapy for Adults Post-Stroke: A Systematic Review and Meta-Analysis Exploring Virtual Environments and Commercial Games in Therapy. PLoS ONE, 9(3), e93318. https://doi.org/10.1371/journal.pone.0093318
Lohse, K. R., Lang, C. E., & Boyd, K. A. (2013). Using meta-data to explore dose-response relationships in stroke ther-apy. Journal of Exercise, Movement, and Sport (SCAPPS Refereed Abstracts Repository), 45(1), Article 1. https://www.scapps.org/jems/index.php/1/article/view/584
Lu, Y., Ge, Y., Chen, W., Xing, W., Wei, L., Zhang, C., ... Yang, Y. (2022). The effectiveness of virtual reality for rehabilitation of Parkinson disease: An overview of systematic reviews with meta-analyses. Systematic Reviews, 11(1), 50. https://doi.org/10.1186/s13643-022-01924-5
Maranesi, E., Casoni, E., Baldoni, R., Barboni, I., Rinaldi, N., Tramontana, B., ... Bevilacqua, R. (2022). The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. International Journal of Environmental Research and Pub-lic Health, 19(22), 14818. https://doi.org/10.3390/ijerph192214818
Maskeliūnas, R., Damaševičius, R., Blažauskas, T., Canbulut, C., Adomavičienė, A., & Griškevičius, J. (2023). Bioma-cVR: A Virtual Reality-Based System for Precise Human Posture and Motion Analysis in Rehabilitation Exercises Us-ing Depth Sensors. Electronics, 12(2), 339. https://doi.org/10.3390/electronics12020339
Mirich, R., Kyvelidou, A., & Greiner, B. S. (2021). The Effects of Virtual Reality Based Rehabilitation on Upper Ex-tremity Function in a Child with Cerebral Palsy: A Case Report. Physical & Occupational Therapy In Pediatrics, 41(6), 620-636. https://doi.org/10.1080/01942638.2021.1909688
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Parsons, T. D. (2015). Virtual Reality for Enhanced Ecological Validity and Experimental Control in the Clinical, Affec-tive and Social Neurosciences. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00660
Paul, R., Elango, S., Chakravarthy, S., Sinha, A., P R, S., Raju, B., ... Sylaja, P. N. (2024). Feasibility and efficacy of virtual reality rehabilitation compared with conventional physiotherapy for upper extremity impairment due to is-chaemic stroke: Protocol for a randomised controlled trial. BMJ Open, 14(7), e086556. https://doi.org/10.1136/bmjopen-2024-086556
Pazzaglia, C., Imbimbo, I., Tranchita, E., Minganti, C., Ricciardi, D., Lo Monaco, R., Parisi, A., & Padua, L. (2020). Comparison of virtual reality rehabilitation and conventional rehabilitation in Parkinson’s disease: A randomised con-trolled trial. Physiotherapy, 106, 36-42. https://doi.org/10.1016/j.physio.2019.12.007
Pérez, V. Z., Yepes, J. C., Vargas, J. F., Franco, J. C., Escobar, N. I., Betancur, L., ... Betancur, M. J. (2022). Virtual Reality Game for Physical and Emotional Rehabilitation of Landmine Victims. Sensors, 22(15), 5602. https://doi.org/10.3390/s22155602
Phu, S., Vogrin, S., Al Saedi, A., & Duque, G. (2019). Balance training using virtual reality improves balance and physi-cal performance in older adults at high risk of falls. Clinical Interventions in Aging, Volume 14, 1567-1577. https://doi.org/10.2147/CIA.S220890
Pichierri, G., Murer, K., & De Bruin, E. D. (2012). A cognitive-motor intervention using a dance video game to en-hance foot placement accuracy and gait under dual task conditions in older adults: A randomized controlled trial. BMC Geriatrics, 12(1), 74. https://doi.org/10.1186/1471-2318-12-74
Rizzo, A. A., & Buckwalter, J. G. (1997). Virtual reality and cognitive assessment and rehabilitation: The state of the art. Studies in Health Technology and Informatics, 44, 123-145.
Rogers, J. M., Duckworth, J., Middleton, S., Steenbergen, B., & Wilson, P. H. (2019). Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: Evidence from a randomized controlled pilot study. Journal of NeuroEngineering and Rehabilitation, 16(1), 56. https://doi.org/10.1186/s12984-019-0531-y
Rutkowski, S., Rutkowska, A., Kiper, P., Jastrzebski, D., Racheniuk, H., Turolla, A., ... Casaburi, R. (2020). Virtual Reality Rehabilitation in Patients with Chronic Obstructive Pulmonary Disease: A Randomized Controlled Trial. In-ternational Journal of Chronic Obstructive Pulmonary Disease, Volume 15, 117-124. https://doi.org/10.2147/COPD.S223592
Sadeghi, H., Jehu, D. A., Daneshjoo, A., Shakoor, E., Razeghi, M., Amani, A., ... Yusof, A. (2021). Effects of 8 Weeks of Balance Training, Virtual Reality Training, and Combined Exercise on Lower Limb Muscle Strength, Balance, and Functional Mobility Among Older Men: A Randomized Controlled Trial. Sports Health: A Multidisciplinary Ap-proach, 13(6), 606-612. https://doi.org/10.1177/1941738120986803
Saposnik, G., Levin, M., & for the Stroke Outcome Research Canada (SORCan) Working Group. (2011). Virtual Reali-ty in Stroke Rehabilitation: A Meta-Analysis and Implications for Clinicians. Stroke, 42(5), 1380-1386. https://doi.org/10.1161/STROKEAHA.110.605451
Seel, T., Raisch, J., & Schauer, T. (2014). IMU-Based Joint Angle Measurement for Gait Analysis. Sensors, 14(4), 6891-6909. https://doi.org/10.3390/s140406891
Sip, P., Kozłowska, M., Czysz, D., Daroszewski, P., & Lisiński, P. (2023). Perspectives of Motor Functional Upper Extremity Recovery with the Use of Immersive Virtual Reality in Stroke Patients. Sensors, 23(2), 712. https://doi.org/10.3390/s23020712
Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environ-ments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1535), 3549-3557. https://doi.org/10.1098/rstb.2009.0138
Tao, W., Liu, T., Zheng, R., & Feng, H. (2012). Gait Analysis Using Wearable Sensors. Sensors, 12(2), 2255-2283. https://doi.org/10.3390/s120202255
Tokgöz, P., Wähnert, D., Elsner, A., Schack, T., Cienfuegos Tellez, M. A., Conrad, J., ... Dockweiler, C. (2023). Virtual Reality for Upper Extremity Rehabilitation—A Prospective Pilot Study. Healthcare, 11(10), 1498. https://doi.org/10.3390/healthcare11101498
Webster, D., & Celik, O. (2014). Systematic review of Kinect applications in elderly care and stroke rehabilita-tion. Journal of NeuroEngineering and Rehabilitation, 11(1), 108. https://doi.org/10.1186/1743-0003-11-108
You, S. H., Jang, S. H., Kim, Y.-H., Hallett, M., Ahn, S. H., Kwon, Y.-H., ... Lee, M. Y. (2005). Virtual Reality–Induced Cortical Reorganization and Associated Locomotor Recovery in Chronic Stroke: An Experimenter-Blind Randomized Study. Stroke, 36(6), 1166-1171. https://doi.org/10.1161/01.STR.0000162715.43417.91
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Retos
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess