Resumen
La investigación en este trabajo estudia cuantitativamente el efecto de la realidad aumentada (RA) en las habilidades espaciales de estudiantes universitarios en la formación de ingeniería eléctrica. Con ese fin, se llevó a cabo un estudio cuasi-experimental con 80 estudiantes divididos en cuatro grupos homogéneos y sometidos a diferentes metodologías: RA utilizando dispositivos móviles (Unity y Vuforia), documentos digitales, simulaciones 3D (ANSYS Maxwell) y laboratorios. Para evaluar las habilidades espaciales, se realizaron evaluaciones estandarizadas como Mental Rotation Test (MRT) y Spatial Visualization Test (SVT); la carga cognitiva se midió con NASA Task Load Index; la motivación intrínseca se evaluó utilizando el modelo ARCS de Keller, y el rendimiento académico se determinó mediante pruebas teóricas y prácticas sobre motores de inducción asíncronos. Los resultados del estudio indican que la RA ayudó a desarrollar las habilidades espaciales y redujo la carga cognitiva, al tiempo que mantuvo un mayor nivel de atención, relevancia, confianza y satisfacción en comparación con las otras tres metodologías empleadas. También se identifica un aumento del rendimiento académico. Por último, el estudio establece la viabilidad técnica y pedagógica de la RA como recurso educativo e identifica su potencial para su inclusión en la enseñanza STEM.
Citas
Achachagua, Y. H. Y., & Chinchay, H. E. G. (2022). La realidad aumentada y su efecto en la habilidad espacial de estudiantes de ingeniería mecánica. Revista de Educación a Distancia (RED), 22(70). https://doi.org/10.6018/red.509931
Ahn, S., Kim, T., Park, Y. J., & Kim, J. M. (2020). Improving effectiveness of safety training at construction worksite using 3D BIM simulation. Advances in Civil Engineering, 2020(1), 2473138. https://doi.org/10.1155/2020/2473138
Álvarez-Marín, A., & Velazquez-Iturbide, J. A. (2022). Augmented reality and engineering education: A systematic review. IEEE transactions on learning technologies, 14(6), 817-831. https://doi.org/10.1109/TLT.2022.3144356
Alzahrani, N. M. (2020). Augmented reality: A systematic review of its benefits and challenges in e-learning contexts. Applied sciences, 10(16), 5660. https://doi.org/10.3390/app10165660
An, J., Poly, L. P., & Holme, T. A. (2019). Usability testing and the development of an augmented reality application for laboratory learning. Journal of Chemical Education, 97(1), 97-105. https://doi.org/10.1021/acs.jchemed.9b00453
Arena, F., Collotta, M., Pau, G., & Termine, F. (2022). An overview of augmented reality. Computers, 11(2), 28. https://doi.org/10.3390/computers11020028
Ariali, S. (2020). Training of mental rotation ability in virtual spaces. Journal of Technical Education (JOTED), 8(2), 46-63. https://doi.org/10.48513/joted.v8i2.207
Asham, Y., Bakr, M. H., & Emadi, A. (2023). Applications of Augmented and Virtual Reality in Electrical Engineering Education: A Review. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3337394
Azuma, R. T. (1997). A Survey of Augmented Reality. Presence: Teleoperators & Virtual Environments, 6(4), 355–385. https://doi.org/10.1162/pres.1997.6.4.355
Bautista, L. E., Maradei, F., & Pedraza, G. (2025). Análisis de la Disposición Espacial de Contenido en entornos de Realidad Aumentada y su Efecto en la Carga Cognitiva de los Usuarios. Pixel-Bit. Revista de Medios y Educación. https://doi.org/10.12795/pixelbit.109089
Bogomolova, K., van der Ham, I. J., Dankbaar, M. E., van den Broek, W. W., Hovius, S. E., van der Hage, J. A., & Hierck, B. P. (2020). The effect of stereoscopic augmented reality visualization on learning anatomy and the modifying effect of visual‐spatial abilities: A double‐center randomized controlled trial. Anatomical sciences education, 13(5), 558-567. https://doi.org/10.1002/ase.1941
Bogusevschi, D., Muntean, C., & Muntean, G. M. (2020). Teaching and learning physics using 3D virtual learning environment: A case study of combined virtual reality and virtual laboratory in secondary school. Journal of Computers in Mathematics and Science Teaching, 39(1), 5-18. https://doi.org/10.70725/297454nsjryb
Bourbour, M. (2023). Using digital technology in early education teaching: learning from teachers’ teaching practice with interactive whiteboard. International Journal of Early Years Education, 31(1), 269-286. https://doi.org/10.1080/09669760.2020.1848523
Branoff, T. J. (2000). Spatial visualization measurement: A modification of the Purdue Spatial Visualization Test—visualization of rotations. The Engineering Design Graphics Journal, 64(2). https://doi.org/10.18260/edgj.v64i2.145
Brown, A. M. (2005). A new software for carrying out one-way ANOVA post hoc tests. Computer methods and programs in biomedicine, 79(1), 89-95. https://doi.org/10.1016/j.cmpb.2005.02.007
Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of augmented reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38(1), 285-303. https://doi.org/10.1111/jcal.12617
Chen, Y., Wang, Q., Chen, H., Song, X., Tang, H., & Tian, M. (2019). An overview of augmented reality technology. In Journal of Physics: Conference Series (Vol. 1237, No. 2, p. 022082). IOP Publishing. https://doi.org/10.1088/1742-6596/1237/2/022082
Chen, L., Wang, X., Min, Y., Li, G., Wang, L., Qi, J., & Xu, F. (2020). Modelling and investigating the impact of asynchronous inertia of induction motor on power system frequency response. International Journal of Electrical Power & Energy Systems, 117, 105708. https://doi.org/10.1016/j.ijepes.2019.105708
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrica, 16(3), 297-334. https://doi.org/10.1007/BF02310555
del Cerro Velázquez, F., & Morales Méndez, G. (2017). Realidad Aumentada como herramienta de mejora de la inteligencia espacial en estudiantes de educación secundaria. Revista de Educación a Distancia (RED), (54). http://dx.doi.org/10.6018/red/54/5
del Cerro Velázquez, F., & Morales Méndez, G. (2021). Systematic review of the development of spatial intelligence through augmented reality in stem knowledge areas. Mathematics, 9(23), 3067. https://doi.org/10.3390/math9233067
Elford, D., Lancaster, S. J., & Jones, G. A. (2022). Exploring the effect of augmented reality on cognitive load, attitude, spatial ability, and stereochemical perception. Journal of Science Education and Technology, 31(3), 322-339. https://doi.org/10.1007/s10956-022-09957-0
Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem-based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635. https://doi.org/10.1016/j.compedu.2019.103635
García, F. M., Rojas, L. E. B., & Pedraza, G. (2023). Carga cognitiva y esfuerzo mental durante el cambio de contexto en entornos de realidad aumentada con fines de aprendizaje procedimental. Pixel-Bit. Revista de Medios y Educación, 68, 305-340. https://doi.org/10.12795/pixelbit.97479
Garzón, J., Kinshuk, Baldiris, S., & Fabregat, R. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23(4), 447–459. https://doi.org/10.1007/s10055-019-00379-9
Guillén-Gámez, F. D., Cabero-Almenara, J., Llorente-Cejudo, C., & Palacios-Rodríguez, A. (2022). Differential analysis of the years of experience of higher education teachers, their digital competence and use of digital resources: Comparative research methods. Technology, Knowledge and Learning, 27(4), 1193-1213. https://doi.org/10.1007/s10758-021-09531-4
Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the human factors and ergonomics society annual meeting (Vol. 50, No. 9, pp. 904-908). Sage CA: Los Angeles, CA: Sage publications. https://doi.org/10.1177/154193120605000909
Ibáñez, M. B., & Delgado-Kloos, C. (2018). Augmented reality for STEM learning: A systematic review. Computers & Education, 123, 109–123. https://doi.org/10.1016/j.compedu.2018.05.002
Ismail, A., Festiana, I., Hartini, T. I., Yusal, Y., & Malik, A. (2019). Enhancing students’ conceptual understanding of electricity using learning media-based augmented reality. In Journal of Physics: Conference Series (Vol. 1157, No. 3, p. 032049). IOP Publishing. https://doi.org/10.1088/1742-6596/1157/3/032049
Kanivets, O. V., Kanivets, I. M., & Gorda, T. M. (2022). Development of an augmented reality mobile physics application to study electric circuits. Educational Technology Quarterly, 2022(4), 347-365. https://doi.org/10.55056/etq.429
Kapici, H. O., Akcay, H., & de Jong, T. (2019). Using hands-on and virtual laboratories alone or together―which works better for acquiring knowledge and skills?. Journal of science education and technology, 28(3), 231-250. https://doi.org/10.1007/s10956-018-9762-0
Keller, J. M. (1987). Development and use of the ARCS model of motivational design. Journal of Instructional Development, 10(3), 2–10. https://doi.org/10.1007/BF02905780
Keselman, H. J., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., ... & Levin, J. R. (1998). Statistical practices of educational researchers: An analysis of their ANOVA, MANOVA, and ANCOVA analyses. Review of educational research, 68(3), 350-386. https://doi.org/10.3102/00346543068003350
Kim, J., & Irizarry, J. (2021). Evaluating the use of augmented reality technology to improve construction management student’s spatial skills. International Journal of Construction Education and Research, 17(2), 99-116. https://doi.org/10.1080/15578771.2020.1717680
Lorenzi-Cioldi, F. (1998). Group status and perceptions of homogeneity. European review of social psychology, 9(1), 31-75. https://doi.org/10.1080/14792779843000045
Marini, A., Nafisah, S., Sekaringtyas, T., Safitri, D., Lestari, I., Suntari, Y., ... & Iskandar, R. (2022). Mobile augmented reality learning media with Metaverse to improve student learning outcomes in science class. International Journal of Interactive Mobile Technologies, 16(7). https://doi.org/10.3991/ijim.v16i07.25727
Martín-Gutiérrez, J., Fabiani, P., Benesova, W., Meneses, M. D., & Mora, C. E. (2015). Augmented reality to promote collaborative and autonomous learning in higher education. Computers in Human Behavior, 51, 752–761. https://doi.org/10.1016/j.chb.2014.11.093
Mejías Borrero, A., & Andújar Márquez, J. M. (2011). A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education. Springer Science+Business Media, LLC. https://doi.org/10.1007/s10956-011-9345-9
Morales Méndez, G., & del Cerro Velázquez, F. (2024). Augmented reality in Industry 4.0 assistance and training areas: A systematic literature review and bibliometric analysis. Electronics, 13(6), 1147. https://doi.org/10.3390/electronics13061147
O'Connor, M., Stowe, J., Potocnik, J., Giannotti, N., Murphy, S., & Rainford, L. (2021). 3D virtual reality simulation in radiography education: The students' experience. Radiography, 27(1), 208-214. https://doi.org/10.1016/j.radi.2020.07.017
Oguguo, B., Ezechukwu, R., Nannim, F., & Offor, K. (2023). Analysis of teachers in the use of digital resources in online teaching and assessment in COVID times. Innoeduca. International journal of technology and educational innovation, 9(1), 81-96. https://doi.org/10.24310/innoeduca.2023.v9i1.15419
Papakostas, C., Troussas, C., Krouska, A., & Sgouropoulou, C. (2021). Exploration of augmented reality in spatial abilities training: a systematic literature review for the last decade. Informatics in Education, 20(1), 107-130. http://dx.doi.org/10.15388/infedu.2021.06
Prasetya, F., Fortuna, A., Samala, A. D., Rawas, S., Mystakidis, S., Wulansari, R. E., & Kassymova, G. K. (2024). The impact of augmented reality learning experiences based on the motivational design model: A meta-analysis. Social Sciences & Humanities Open, 10, 100926. https://doi.org/10.1016/j.ssaho.2024.100926
Singh, G., Mantri, A., Sharma, O., & Dutta, R. (2019). Evaluating the impact of the augmented reality learning environment on electronics laboratory skills of engineering students. Computers & Applications in Engineering Education, 27(6), 1361–1375. https://doi.org/10.1002/cae.22156
Slack, M. K., & Draugalis Jr, J. R. (2001). Establishing the internal and external validity of experimental studies. American journal of health-system pharmacy, 58(22), 2173-2181. https://doi.org/10.1093/ajhp/58.22.2173
Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31(3), 459–480. https://doi.org/10.1080/09500690802595839
Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and instruction, 8(4), 351-362. https://doi.org/10.1207/s1532690xci0804_5
Tarasenko, R. O., Amelina, S. M., Semerikov, S. O., & Shynkaruk, V. D. (2021). Using interactive semantic networks as an augmented reality element in autonomous learning. In Journal of Physics: Conference Series (Vol. 1946, No. 1, p. 012023). IOP Publishing. https://doi.org/10.1088/1742-6596/1946/1/012023
Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316
Uttal, D. H., et al. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 4, 599–604. https://doi.org/10.2466/pms.1978.47.2.599
Yang, X., Mao, W., Hu, Y., Wang, J., Wan, X., & Fang, H. (2023). Does augmented reality help in industrial training? A comprehensive evaluation based on natural human behavior and knowledge retention. International Journal of Industrial Ergonomics, 98, 103516. https://doi.org/10.1016/j.ergon.2023.103516

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Pixel-Bit. Revista de Medios y Educación
