Resumen
La irrupción de la inteligencia artificial generativa en la educación plantea desafíos y oportunidades sin precedentes para la formación inicial docente. En este contexto, el diseño de prompts emerge como una competencia clave que articula saberes pedagógicos, lingüísticos, digitales y éticos. Este estudio analiza el desempeño de 481 estudiantes del Máster de Profesorado de Secundaria en una actividad centrada en la elaboración de prompts educativos, guiados por el modelo didáctico CRETA+R (Contexto, Rol, Ejemplos, Tarea, Ajustar, Refinar). Se aplicó una metodología mixta que combinó análisis cuantitativo (estadísticas descriptivas, correlaciones de Spearman y visualización de datos) con análisis cualitativo de ejemplos representativos. La evaluación se realizó mediante una rúbrica analítica aplicada por el profesorado, y los datos fueron procesados con el software JASP 0.19.3. Los resultados indican un buen dominio en componentes estructurales como “Contexto” y “Tarea”, y mayores dificultades en los aspectos metacognitivos, como “Ajustar” y “Refinar”. Aunque no se hallaron diferencias significativas entre especialidades, el análisis visual y cualitativo muestra patrones diferenciados por área. El modelo CRETA+R se consolida como un andamiaje eficaz para guiar el desarrollo progresivo de esta competencia emergente en contextos de formación docente.
Citas
Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in the era of generative artificial intelligence: Understanding the impact of ChatGPT on teaching and learning. Education and Information Technologies, 29, 739–758. https://doi.org/10.1007/s10639-023-11948-4
Bearman, M., Ryan, J., & Ajjawi, R. (2023). Discourses of artificial intelligence in higher education: A critical literature review. Higher Education, 86, 369–385. https://doi.org/10.1007/s10734-022-00937-2
Bond, M. (2024). AI applications in Initial Teacher Education: A systematic mapping review. Computers and Education: Artificial Intelligence, 6, 100228. https://doi.org/10.1016/j.caeai.2024.100228
Bozkurt, A., & Sharma, R. C. (2023). Generative AI and prompt engineering: The art of whispering to let the genie out of the algorithmic world. Asian Journal of Distance Education, 18(2), i–vii. https://tinyurl.com/mr2csd5u
Comisión Europea (2022). Directrices éticas sobre el uso de la inteligencia artificial (IA) y los datos en la educación y formación para los educadores. Oficina de Publicaciones de la Unión Europea. https://tinyurl.com/yckdz2vk
Debnath, S., Dai, T., Smith, G., & Sridhar, S. (2025). Prompt engineering in education: A framework and research agenda. Computers and Education: Artificial Intelligence, 7, 100289. https://doi.org/10.1016/j.caeai.2025.100289
Eager, B., & Brunton, R. (2023). Prompting Higher Education Towards AI-Augmented Teaching and Learning Practice. Journal of University Teaching & Learning Practice, 20(5). https://doi.org/10.53761/1.20.5.02
Federiakin, M., Azaria, A., & Hershkovitz, A. (2024). Prompt engineering skills and strategies: Toward a framework for assessing student interaction with generative AI. Computers and Education: Artificial Intelligence, 6, 100267. https://doi.org/10.1016/j.caeai.2024.100267
González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial Intelligence for Student Assessment: A Systematic Review. Applied Sciences, 11(12), 5467. https://doi.org/10.3390/APP11125467
Graux, A., Brassier, C., & Guillemet, M. (2024). Prompt engineering as a learning activity in higher education: A case study of a design workshop. Computers and Education: Artificial Intelligence, 6, 100258. https://doi.org/10.1016/j.caeai.2024.100258
Higginbotham, R., & Matthews, J. (2024). Improving Prompt Iteration with AI: Lessons from an Educational Pilot Study. In Proceedings of the 24th International Conference on Artificial Intelligence in Education (AIED 2024).
Knoth, N., Tolzin, A., Janson, A., & Leimeister, J. M. (2024). AI literacy and its implications for prompt engineering strategies. Computers and Education: Artificial Intelligence, 6, 100225. https://doi.org/10.1016/j.caeai.2024.100225
Korzyński, P., Mazurek, G., Krzypkowska, P., & Kurasiński, A. (2023). Artificial intelligence prompt engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT. Entrepreneurial Business and Economics Review, 11(3), 25–37. https://doi.org/10.15678/EBER.2023.110302
Lo, L. (2023). The Art and Science of Prompt Engineering: A New Literacy in the Information Age. Internet Reference Services Quarterly, 27, 203–210. https://doi.org/10.1080/10875301.2023.2227621
Luckin, R., Rudolph, J., Grünert, M., & Tan, S. (2024). Exploring the future of learning and the relationship between human intelligence and AI. An interview with Professor Rose Luckin. Journal of Applied Learning and Teaching, 7(1), 346–363. https://doi.org/10.37074/jalt.2024.7.1.27
Moldavan, C., & Nafziger, R. (2024). Scaffolding a Critical Lens of Generative AI for Lesson Planning. Contemporary Issues in Technology and Teacher Education, 24(1), 45–62. https://tinyurl.com/mvaeu929
Oppenlaender, J., Linder, R., & Silvennoinen, J. (2024). Prompting AI Art: An Investigation into the Creative Skill of Prompt Engineering. International Journal of Human–Computer Interaction, 1-23. https://doi.org/10.1080/10447318.2024.2431761
Ranade, D., Gillespie, T., & Lin, T. (2024). Rhetorical prompting: A framework for prompt design in educational contexts. Learning, Media and Technology, 49(1), 12–34. https://doi.org/10.1080/17439884.2024.2278910
Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304. https://doi.org/10.1207/s15327809jls1303_2
Reglamento (UE) 2024/1689 del Parlamento Europeo y del Consejo, de 13 de junio de 2024, por el que se establecen normas armonizadas en materia de inteligencia artificial. Diario Oficial de la Unión Europea, L 144, 12 de julio de 2024. https://tinyurl.com/9kn8ww8c
Roscoe, R. D. (2023). Building inclusive and equitable artificial intelligence for education. XRDS: Crossroads, The ACM Magazine for Students, 29(3), 22–25. https://doi.org/10.1145/3589637
Rosenshine, B. (2012). Principles of Instruction: Research-Based Strategies That All Teachers Should Know. American Educator, 36(1), 12–19. https://eric.ed.gov/?id=EJ971753
Sajja, R., Sermet, Y., Cikmaz, M., Cwiertny, D., & Demir, I. (2024). Artificial intelligence-enabled intelligent assistant for personalized and adaptive learning in higher education. Information, 15(10), 596. https://doi.org/10.3390/info15100596
Silva, B. (2024). Generative Artificial Intelligence in chemistry teaching: ChatGPT, Gemini, and Copilot’s content responses. Journal of Applied Learning and Teaching, 7(2). https://doi.org/10.37074/jalt.2024.7.2.13
Theophilou, E., Koyutürka, C., Yavari, M., Bursic, S., Donabauer, G., Telari, A., Testa, A., Boiano, R., Hernández-Leo, D., Ruskov, M., Taibi, D., Gabbiadini, A., & Ognibene, D. (2023). Learning to Prompt in the Classroom to Understand AI Limits: A Pilot Study. In Proceedings of the 22nd International Conference of the Italian Association for Artificial Intelligence (AIXIA 2023), Rome, Italy. https://doi.org/10.48550/arXiv.2307.01540
Zamfirescu-Pereira, J., Wong, R., Hartmann, B., & Yang, Q. (2023). Why Johnny Can’t Prompt: How Non-AI Experts Try (and Fail) to Design LLM Prompts. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3544548.3581388

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Derechos de autor 2025 Pixel-Bit. Revista de Medios y Educación
