Análisis del nivel de pensamiento computacional de los futuros maestros: una propuesta diagnóstica para el diseño de acciones formativas
PDF (Español/English)
HTML

Métricas alternativas

Palabras clave

Computational thinking
programming logic
higher education
gender
previous experience pensamiento computacional
educación superior
género
experiencia previa
lógica programación

Cómo citar

Villalustre Martínez, L. (2024). Análisis del nivel de pensamiento computacional de los futuros maestros: una propuesta diagnóstica para el diseño de acciones formativas. Pixel-Bit. Revista De Medios Y Educación, (69), 169–194. https://doi.org/10.12795/pixelbit.101205

Resumen

El pensamiento computacional supone una forma de alfabetización emergente que busca fomentar el aprendizaje de la programación de forma progresiva utilizando principios básicos de codificación informática. En este estudio se evaluó el pensamiento computacional de 164 estudiantes universitarios de los grados de maestro/a en educación infantil y primaria. Se examinaron las diferencias según el género y la experiencia previa en programación robótica. Para ello, se empleó el Test de Pensamiento Computacional (TPC). Los resultados revelan que los hombres obtuvieron mejores resultados y que la experiencia previa en programación influyó en el nivel de desarrollo del pensamiento computacional. Además, se identificaron tres perfiles de estudiantes mediante un análisis de clúster. Las mujeres con experiencia previa en programación robótica y el uso de lenguajes de programación mostraron los mejores resultados en el TPC. Estos hallazgos resaltan la importancia de realizar evaluaciones diagnósticas para conocer el nivel de competencia de los estudiantes en este ámbito, ya que puede ayudar a identificar áreas de mejora y adaptar las acciones formativas de acuerdo a las necesidades de cada grupo de estudiantes.

https://doi.org/10.12795/pixelbit.101205
PDF (Español/English)
HTML

Citas

Angeli, C. & Valanides, N. (2020). Developing young children's computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in human behavior, 105, 105954. https://doi.org/10.1016/j.chb.2019.03.018

Atmatzidou, S. & Demetriadis, S. (2016). Advancing students' computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems, 75, 661-670. https://doi.org/10.1016/j.robot.2015.10.008

Álvaro Paje, M. (1990). Hacia un modelo causal del rendimiento académico. CIDE.

Bati, K. (2022). A systematic literature review regarding computational thinking and programming in early childhood education. Educ Inf Technol, 27, 2059–2082. https://doi.org/10.1007/s10639-021-10700-2

Ben, A., Dahmani, M., & Ragni, L. (2022). ICT use, digital skills and students’ academic performance: Exploring the digital divide. Information, 13(3). https://doi.org/10.3390/info13030129

Bers, M. (2010). The TangibleK robotics program: Applied computational thinking for young children. Early Childhood Research & Practice, 12(2), 1-20. http://ecrp.uiuc.edu/v12n2/bers.html

Bers, M.U., Flannery, L., Kazakoff, E.R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157. https://doi.org/10.1016/j.compedu.2013.10.020

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.

Chan, R. (2022). A social cognitive perspective on gender disparities in self-efficacy, interest, and aspirations in science, technology, engineering, and mathematics (STEM): the influence of cultural and gender norms. International Journal of STEM Education, 9(1), 1-13. https://doi.org/10.1186/s40594-022-00352-0

Charlesworth, T. & Banaji, M. (2019). Gender in science, technology, engineering, and mathematics: issues, causes, solutions. Journal of Neuroscience, 39(37), 7228-7243. https://doi.org/10.1523/JNEUROSCI.0475-18.2019

Chan, S., Looi, C., & Sumintono, B. (2021). Assessing computational thinking abilities among Singapore secondary students: A rasch model measurement analysis. Journal of Computers in Education, 8(2), 213-236. https://doi.org/10.1007/s40692-020-00177-2

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11

Fennema, E., Carpenter, T., & Jacobs, V. (2016). A longitudinal study of gender differences in young children’s mathematical thinking. Educational Researcher, 27 (5), 6-11. https://doi.org/10.3102/0013189X027005006

Guggemos, J., Seufert, S., & Román-González, M. (2022). Computational Thinking Assessment–Towards More Vivid Interpretations. Technology, Knowledge and Learning, 1-30. https://doi.org/10.1007/s10758-021-09587-2

Kline, R. B. (2011). Principles and practice of structural equation modeling. New York: Guilford Press.

Kaufman, L. & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.

Kanny, M., Sax, L., & Riggers-Piehl, T. (2014). Investigating forty years of STEM research: how explanations for the gender gap have evolved over time. Journal of Women and Minorities in Science and Engineering, 20(2), 127–148. https://doi.org/10.1615/JWomenMinorScienEng.2014007246

Kelleher, C. & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of programming environments and languages for novice programmers. ACM Computing Surveys, 37(2), 83-137. https://doi.org/10.1145/1089733.1089734

Lu, C., Macdonald, R., Odell, B., Kokhan, V., Demmans, C., & Cutumisu, M. (2022). A scoping review of computational thinking assessments in higher education. Journal Computer High Education, 34, 416–461. https://doi.org/10.1007/s12528-021-09305-y

Majeed, B., Jawad, L., & ALRikabi, H. (2002). Computational Thinking (CT) Among University Students. International Journal of Interactive Mobile Technologies, 16(10), 244-252

Maya, I., Pearson, J., Tapia, T., Wherfel, Q., & Reese, G. (2015). Supporting all learners in school-wide computational thinking: a cross-case qualitative analysis. Computers & Education, 82, 263-279. https://doi.org/10.1016/j.compedu.2014.11.022

Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. (2017). Programming experience promotes higher STEM motivation among first-grade girls. Journal of Experimental Child Psychology, 160 (1), 92-106. https://doi.org/10.1016/j.jecp.2017.03.013

Morris, K. (2013). Revising the Declaration of Helsinki. World Report, 381, 1889–1890. https://doi.org/10.1016/S0140-6736(13)60951-4

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

Popat, S. & Starkey, L. (2019). Learning to code or coding to learn? A systematic review. Computers & Education, 128, 365-376. https://doi.org/10.1016/j.compedu.2018.10.005

Repenning, A., Webb, D., & Ioannidou, A. (2010). Scalable game design and the development of a checklist for getting computational thinking into public schools. Proceedings of the 41st ACM Technical Symposium on Computer Science Education, Milwaukee, Wisconsin, USA.

Román-González, M. (2015). Computational Thinking Test: Design Guidelines and Content Validation. International Conference on Education and New Learning Technologies EDULEARN. Barcelona. https://bit.ly/3yZBd7t

Rubio, M.J. & Vilà, R. (2017). El análisis de conglomerados bietápico o en dos fases con SPSS. REIRE. Revista d’Innovació i Recerca en Educació, 10(1), 118–126. https://doi.org/10.1344/reire2017.10.11017

Selby, C. (2012). Promoting computational thinking with programming. Proceedings of the 7th workshop in primary and secondary computing education, ACM. New York. 74-77. https://doi.org/10.1145/2481449.2481466

Sun, L., Hu, L. & Zhou, D. (2022). Programming attitudes predict computational thinking: Analysis of differences in gender and programming experience. Computers & Education, 181, 104457. https://doi.org/10.1016/j.compedu.2022.104457

Tsarava, K., Moeller, K., Román-González, M., Golle, J., Leifheit, L., Butz, M. V., & Ninaus, M. (2022). A cognitive definition of computational thinking in primary education. Computers & Education, 179, 104425. https://doi.org/10.1016/j.compedu.2021.104425

Tikva, C. & Tambouris, E. (2021). Mapping computational thinking through programming in K-12 education: A conceptual model based on a systematic literature Review. Computers & Education, 162, 104083. https://doi.org/10.1016/j.compedu.2020.104083

Ung, L., Labadin, J., & Mohamad, F. (2022). Computational thinking for teachers: Development of a localised E-learning system. Computers & Education, 177, 104379. https://doi.org/10.1016/j.compedu.2021.104379

Wang, C., Shen, J., & Chao, J. (2022). Integrating computational thinking in STEM education: A literature review. International Journal of Science and Mathematics Education, 20(8), 1949-1972. https://doi.org/10.1007/s10763-021-10227-5

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment for computational thinking. Journal of Educational Computing Research, 53 (4), 562-590. https://doi.org/10.1177/0735633115608444

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2023 Pixel-Bit. Revista de Medios y Educación

Descargas

Los datos de descargas todavía no están disponibles.