Caracterização de diferentes cargas com a mesma percentagem de perda de velocidade no exercício de lançamento de supino

Autores

DOI:

https://doi.org/10.47197/retos.v61.106268

Palavras-chave:

Cortisol salival, Entrenamiento de fuerza basado en la velocidad, Fatiga, Press de banca

Resumo

A perda de velocidade tem sido reconhecida como um índice eficaz de fadiga no treino de resistência. Contudo, a consequência fisiológica desta fadiga deve ser descrita. A resposta hormonal tem sido tradicionalmente objeto de debate entre os investigadores em relação ao treino de resistência sem fadiga. Uma das hormonas estudadas foi o cortisol, uma hormona relacionada com o processo inflamatório do exercício, em concentração salivar. Este estudo teve como objetivo comparar a resposta aguda do cortisol salivar (Sal-C) a diferentes percentagens de 1RM com a fadiga padronizada por perda de velocidade de 10%. Foi desenhado um estudo experimental, randomizado e contrabalançado. Participaram no estudo 15 homens (jejuaram 12 horas antes da realização do teste), realizando 6 séries de lançamentos de supino com diferentes percentagens de 1RM (30% - 90% de 1RM. O cortisol salivar foi recolhido antes e depois de cada teste. A perda de velocidade foi medida com um codificador linear. ANOVA e tamanho do efeito foram realizados. O Sal-C apresentou uma diminuição significativa em todas as percentagens e o tamanho do efeito foi maior com carga baixa (1,61 alta) do que com carga alta (0,95-1 moderada). A potência de pico foi significativamente maior entre 40-70% de 1RM em comparação com outras percentagens (30-80% de 1RM). Os resultados desta investigação suportam a ideia de que o treino baseado na velocidade mantém o equilíbrio dinâmico dos organismos independentemente da intensidade do treino. Além disso, os indivíduos não treinados poderiam efetivamente realizar até seis séries em todas as percentagens, mas realizando menos repetições a intensidades mais elevadas, uma vez que este estudo mostra que os indivíduos não treinados alcançaram uma perda de velocidade de 10% em quatro repetições.

Palavras-chave: Cortisol salivar; Treino de força baseado na velocidade; Fadiga, Supino

Referências

Ahtiainen, J. P., Pakarinen, A., Alen, M., Kraemer, W. J., & Häkkinen, K. (2005). Short vs. long rest period between the sets in hypertrophic resistance training: Influence on muscle strength, size, and hormonal adaptations in trained men. Journal of Strength and Conditioning Research, 19(3), 572–582. https://doi.org/10.1519/15604.1

Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Phys-iological Reviews, 88(1), 287–332. https://doi.org/10.1152/physrev.00015.2007

Azizbeigi, K., Azarbayjani, M. A., Atashak, S., & Stannard, S. R. (2015). Effect of moderate and high resistance training intensity on indices of inflammato-ry and oxidative stress. Research in Sports Medicine, 23(1), 73–87. https://doi.org/10.1080/15438627.2014.975807

Baker, D., Nance, S., & Moore, M. (2001). The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. Journal of Strength and Conditioning Research, 15(1), 20–24. https://doi.org/10.1519/1533-4287(2001)015<0020:TLTMTA>2.0.CO;2

Becker, L., Semmlinger, L., & Rohleder, N. (2021). Resistance training as an acute stressor in healthy young men: associations with heart rate variability, alpha-amylase, and cortisol levels. Stress, 24(3), 318–330. https://doi.org/10.1080/10253890.2020.1799193

Bermejo, J. L., Valldecabres, R., Villarrasa-Sapiña, I., Monfort-Torres, G., Marco-Ahulló, A., & Ribeiro Do Couto, B. (2022). Increased cortisol levels caused by acute resistance physical exercise impair memory and learning ability. PeerJ, 10, e13000. https://doi.org/10.7717/PEERJ.13000/SUPP-1

Borgenvik, M., Apró, W., & Blomstrand, E. (2012). Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. American Jour-nal of Physiology - Endocrinology and Metabolism, 302(5), E510–E521. https://doi.org/10.1152/ajpendo.00353.2011

Burd, N. A., Andrews, R. J., West, D. W., Little, J. P., Cochran, A. J., Hector, A. J., Cashaback, J. G., Gibala, M. J., Potvin, J. R., Baker, S. K., & Phillips, S. M. (2012). Muscle time under tension during re-sistance exercise stimulates differential muscle pro-tein sub-fractional synthetic responses in men. Journal of Physiology, 590(2), 351–362. https://doi.org/10.1113/jphysiol.2011.221200

Cairns, S. P., Knicker, A. J., Thompson, M. W., & Sjøgaard, G. (2005). Evaluation of models used to study neuromuscular fatigue. Exercise and Sport Scienc-es Reviews, 33(1), 9–16.

Crewther, B., Keogh, J., Cronin, J., & Cook, C. (2006). Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Medicine (Auckland, N.Z.), 36(3), 215–238. https://doi.org/10.2165/00007256-200636030-00004

Crewther, B. T., Al-Dujaili, E., Smail, N. F., Anasta-sova, S., Kilduff, L. P., & Cook, C. J. (2013). Moni-toring salivary testosterone and cortisol concentra-tions across an international sports competition: Data comparison using two enzyme immunoassays and two sample preparations. Clinical Biochemistry, 46(4–5), 354–358. https://doi.org/10.1016/j.clinbiochem.2012.11.019

Crewther, B. T., Lowe, T., Weatherby, R. P., Gill, N., & Keogh, J. (2009). Neuromuscular performance of elite rugby union players and relationships with sali-vary hormones. Journal of Strength and Conditioning Research, 23(7), 2046–2053. https://doi.org/10.1519/JSC.0b013e3181b73c19

Crewther, B. T., Obmiński, Z., & Cook, C. J. (2018). Serum cortisol as a moderator of the relationship be-tween serum testosterone and Olympic weightlifting performance in real and simulated competitions. Bi-ology of Sport, 35(3), 215–221. https://doi.org/10.5114/biolsport.2018.74632

Cronin, J., McNair, P. J., & Marshall, R. N. (2001). Developing explosive power: A comparison of tech-nique and training. Journal of Science and Medicine in Sport, 4(1), 59–70. https://doi.org/10.1016/S1440-2440(01)80008-6

Freeman, P. R., Hedges, L. V., & Olkin, I. (1986). Sta-tistical Methods for Meta-Analysis. Biometrics, 42(2), 454-454. https://doi.org/10.2307/2531069

García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Gregory Haff, G. (2018). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press rela-tive load with higher reliability? Journal of Strength and Conditioning Research, 32(5), 1273–1279. https://doi.org/10.1519/JSC.0000000000001998

García-Ramos, A., Torrejón, A., Feriche, B., Morales-Artacho, A. J., Pérez-Castilla, A., Padial, P., & Haff, G. G. (2018). Prediction of the maximum number of repetitions and repetitions in reserve from barbell ve-locity. International Journal of Sports Physiology and Per-formance, 13(3), 353–359. https://doi.org/10.1123/ijspp.2017-0302

Gatti, R., & De Palo, E. F. (2011). An update: Salivary hormones and physical exercise. Scandinavian Journal of Medicine and Science in Sports, 21(2), 157–169. https://doi.org/10.1111/j.1600-0838.2010.01252.x

González-Badillo, J. J., & Gorostiaga-Ayestarán, E. (2002). Fundamentos del entrenamiento de la fuerza: Aplicación al alto rendimiento deportivo. Inde.

González-Badillo, J. J., Marques, M. C., & Sánchez-Medina, L. (2011). The importance of movement ve-locity as a measure to control resistance training in-tensity. Journal of Human Kinetics, Special Issue, 15–19. https://doi.org/10.2478/v10078-011-0053-6

González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement Velocity as a Measure of Loading Intensi-ty in Resistance Training. International Journal of Sports Medicine, 31(05), 347–352. https://doi.org/10.1055/s-0030-1248333

Guez-Rosell, D. R., Yanez-Garcia, J. M., Sanchez-Medina, L., Mora-Custodio, R., & Lez-Badillo, J. J. G. (2020). Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. Journal of Strength and Conditioning Research, 34(9), 2537–2547. https://doi.org/10.1519/JSC.0000000000002881

Hall, J. E., & Hall, M. E. (2020). Guyton and Hall text-book of medical physiology e-Book. Elsevier Health Sci-ences.

Hamdi, M. M., & Mutungi, G. (2010). Dihydrotestos-terone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres. Jour-nal of Physiology, 588(3), 511–525. https://doi.org/10.1113/jphysiol.2009.182162

Hedges, L. V., & Pigott, T. D. (2004). The power of statistical tests for moderators in meta-analysis. Psy-chological Methods, 9(4), 426–445. https://doi.org/10.1037/1082-989X.9.4.426

Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress re-search. Psychoneuroendocrinology, 34(2), 163–171. https://doi.org/10.1016/j.psyneuen.2008.10.026

Jones, D. A. (2010). Changes in the force-velocity rela-tionship of fatigued muscle: implications for power production and possible causes. Journal of Physiology, 588(16), 2977–2986. https://doi.org/10.1113/jphysiol.2010.190934

Kraemer, W. J., & Mazzetti, S. A. (2003). Hormonal Mechanisms Related to the Expression of Muscular Strength and Power. In P. V. Komi (Ed.), Strength and Power in Sport (Second, pp. 73–95). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470757215.CH5

Legaz-Arrese, A., Reverter-masía, J., Munguía-Izquierdo, D., & Ceballos-Gurrola, O. (2007). An analysis of resistance training based on the mainte-nance of mechanical power. Journal of Sports Medicine and Physical Fitness, 47(4), 427–436.

Loturco, I., Kobal, R., Moraes, J. E., Kitamura, K., Cal Abad, C. C., Pereira, L. A., & Nakamura, F. Y. (2017). Predicting the maximum dynamic strength in bench press: The high precision of the bar velocity approach. Journal of Strength and Conditioning Re-search, 31(4), 1127–1131. https://doi.org/10.1519/JSC.0000000000001670

Mangine, G. T., Hoffman, J. R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., Beyer, K. S., Boone, C. H., Miramonti, A. A., Wang, R., LaMonica, M. B., Fukuda, D. H., Ratamess, N. A., & Stout, J. R. (2015). The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiological Re-ports, 3(8). https://doi.org/10.14814/phy2.12472

McCaulley, G. O., McBride, J. M., Cormie, P., Hud-son, M. B., Nuzzo, J. L., Quindry, J. C., & Travis Triplett, N. (2009). Acute hormonal and neuromus-cular responses to hypertrophy, strength and power type resistane exercise. European Journal of Applied Physiology, 105(5), 695–704. https://doi.org/10.1007/s00421-008-0951-z

McGuigan, M. R., Egan, A. D., & Foster, C. (2004). Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of re-sistance exercise. Journal of Sports Science and Medi-cine, 3(1), 8–15.

McMillian, D. J., Moore, J. H., Hatler, B. S., & Taylor, D. C. (2006). Dynamic vs. static-stretching warm up: The effect on power and agility performance. Journal of Strength and Conditioning Research, 20(3), 492–499. https://doi.org/10.1519/18205.1

Papacosta, E., & Nassis, G. P. (2011). Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. Journal of Science and Medicine in Sport, 14(5), 424–434. https://doi.org/10.1016/j.jsams.2011.03.004

Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine and Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678

Rhea, M. R. (2004). Determining the Magnitude of Treatment Effects in Strength Training Research Through the Use of the Effect Size Matthew. Journal of Strength and Conditioning Research, 18(4), 918–920.

Rhen, T., & Cidlowski, J. A. (2005). Antiinflammatory action of glucocorticoids - New mechanisms for old drugs. New England Journal of Medicine, 353(16), 1711-1723+1658. https://doi.org/10.1056/NEJMra050541

Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine and Science in Sports and Exercise, 43(9), 1725–1734. https://doi.org/10.1249/mss.0b013e318213f880

Sánchez-Medina, L., González-Badillo, J. J., Pérez, C. E., & Pallarés, J. G. (2014). Velocity- and power-load relationships of the bench pull vs bench press exercises. International Journal of Sports Medicine, 35(3), 209–216. https://doi.org/10.1055/s-0033-1351252

Sarabia, J. M., Fernandez-Fernandez, J., Juan-Recio, C., Hernández-Davó, H., Urbán, T., & Moya, M. (2015). Mechanical, hormonal and psychological ef-fects of a non-failure short-term strength training program in young tennis players. Journal of Human Ki-netics, 45(1), 81–91. https://doi.org/10.1515/hukin-2015-0009

Sarabia, J. M., Moya-Ramón, M., Hernández-Davó, J. L., Fernandez-Fernandez, J., & Sabido, R. (2017). The effects of training with loads that maximise pow-er output and individualised repetitions vs. traditional power training. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0186601

Soriano, M. A., Jiménez-Reyes, P., Rhea, M. R., & Ma-rín, P. J. (2015). The optimal load for maximal power production during lower-body resistance ex-ercises: a meta-analysis. Sports Medicine, 45(8), 1191–1205. https://doi.org/10.1007/s40279-015-0341-8

Stock, M. S., Beck, T. W., Defreitas, J. M., & Dillon, M. A. (2010). Relationships among peak power output, peak bar velocity, and mechanomyographic ampli-tude during the free-weight bench press exercise. Journal of Sports Sciences, 28(12), 1309–1317. https://doi.org/10.1080/02640414.2010.499440

Stokes, K. A., Gilbert, K. L., Hall, G. M., Andrews, R. C., & Thompson, D. (2013). Different responses of selected hormones to three types of exercise in young men. European Journal of Applied Physiology, 113(3), 775–783.

Trybulski, R., Gepfert, M., Gawel, D., Bichowska, M., Fostiak, K., Wojdala, G., Trybek, G., Krzysztofik, M., & Wilk, M. (2022). Impact of movement tempo on bar velocity and time under tension in resistance exercises with different external loads. Biology of Sport, 39(3), 547–554. https://doi.org/10.5114/biolsport.2022.106160

Viru, A. M., Hackney, A. C., Välja, E., Karelson, K., Janson, T., & Viru, M. (2001). Influence of pro-longed continuous exercise on hormone responses to subsequent exercise in humans. European Journal of Applied Physiology, 85(6), 578–585. https://doi.org/10.1007/s004210100498

Walker, S., Häkkinen, K., Virtanen, R., Mane, S., Bachero-Mena, B., & Pareja-Blanco, F. (2022). Acute neuromuscular and hormonal responses to 20 versus 40% velocity loss in males and females be-fore and after 8 weeks of velocity-loss resistance training. Experimental Physiology, 107(9), 1046–1060. https://doi.org/10.1113/EP090371

Wing, S. S., & Goldberg, A. L. (1993). Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. The American Journal of Physiology, 264(4 Pt 1), E668–E676. https://doi.org/10.1152/AJPENDO.1993.264.4.E668

Downloads

Publicado

2024-12-01

Como Citar

García-Valverde, A., Pastor, D., Raya-González, J., & Moya-Ramón, M. (2024). Caracterização de diferentes cargas com a mesma percentagem de perda de velocidade no exercício de lançamento de supino. Retos, 61, 677–684. https://doi.org/10.47197/retos.v61.106268

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)