Caracterización de diferentes cargas con el mismo porcentaje de pérdida de velocidad en el ejercicio de lanzamiento en press de banca (Characterizing different loads with the same velocity loss percentage in the bench press throw exercise)

Autores/as

DOI:

https://doi.org/10.47197/retos.v61.106268

Palabras clave:

Cortisol salival, Entrenamiento de fuerza basado en la velocidad, Fatiga, Press de banca

Resumen

La pérdida de velocidad ha sido reconocida como un eficaz índice de fatiga en el entrenamiento de resistencia. Sin embargo, debe describirse la consecuencia fisiológica de esta fatiga. Tradicionalmente, la respuesta hormonal ha sido objeto de debate entre los investigadores en relación con el entrenamiento de resistencia sin fatiga. Una de las hormonas estudiadas ha sido el cortisol, una hormona relacionada con el proceso inflamatorio del ejercicio, en la concentración salival. Este estudio pretendía comparar la respuesta aguda del cortisol salival (Sal-C) a diferentes porcentajes de 1RM con fatiga estandarizada por una pérdida de velocidad del 10%. Se diseñó un estudio experimental, aleatorizado y contrabalanceado. Quince hombres participaron en el estudio (ayunaron 12 horas antes de realizar la prueba), realizando 6 series de lanzamiento de press de banca con diferentes porcentajes de 1RM (30% - 90% 1RM), Se recogió cortisol salival antes y después de cada prueba. La pérdida de velocidad se midió con un codificador lineal. Se realizaron ANOVA y tamaño del efecto. El Sal-C mostró una disminución significativa en todos los porcentajes y el tamaño del efecto fue mayor con carga baja (1,61 alta) que con carga alta (0,95-1 moderada). La potencia máxima fue significativamente mayor entre el 40-70% de 1RM en comparación con otros porcentajes (30-80% de 1RM). Los resultados de esta investigación apoyan la idea de que el entrenamiento basado en la velocidad mantiene el equilibrio dinámico de los organismos independientemente del entrenamiento de intensidad. Además, los sujetos no entrenados podían realizar eficazmente hasta seis series en todos los porcentajes, pero realizando menos repeticiones a intensidades más elevadas, ya que este estudio muestra que los sujetos no entrenados alcanzaron una pérdida de velocidad del 10% en cuatro repeticiones.

Palabras clave: Cortisol Salival; Entrenamiento de fuerza basado en la velocidad; Fatiga, Press de banca

Abstract. Velocity loss has been recognized as an effective fatigue index in resistance training. However, the physiological consequences of this fatigue should be described. Traditionally, researchers have debated the hormonal response to non-failure resistance training. Cortisol on salivary concentration was one of the hormones under study, which is linked to the inflammatory process from exercise. This study aimed to compare the acute salivary cortisol (Sal-C) response at different percentages of 1RM with fatigue standardized by a 10% velocity loss. An experimental, randomized, and counterbalanced activity was designed. Fifteen men took part in the study (they fasted for 12 hours before carrying out the test), performing 6 sets of bench press throw with different 1RM percentages (30% - 90% 1RM). Salivary Cortisol was collected before and after each test. Velocity loss was measured by a linear encoder. ANOVA and Effect Size were performed. Sal-C showed a significant decrease in all percentages and effect size was greater with low loads (1.61 high) than with high loads (0.95-1 moderate). Peak power was significantly higher between 40-70% of 1RM compared to other percentages (30-80% 1RM). The results of this research support the idea that velocity-based training sustains the dynamic equilibrium of organisms independently of intensity training. Moreover, untrained subjects could perform efficiently up to six sets at all percentages but with fewer repetitions at higher intensities, as this study shows that untrained subjects achieved 10% velocity loss under four repetitions.

Keywords: Salivary Cortisol; Velocity-based resistance training; Fatigue; Bench press. Caracterización de diferentes cargas con el mismo porcentaje de pérdida de velocidad en el ejercicio de lanzamiento de press de banca.

Citas

Ahtiainen, J. P., Pakarinen, A., Alen, M., Kraemer, W. J., & Häkkinen, K. (2005). Short vs. long rest period between the sets in hypertrophic resistance training: Influence on muscle strength, size, and hormonal adaptations in trained men. Journal of Strength and Conditioning Research, 19(3), 572–582. https://doi.org/10.1519/15604.1

Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: Cellular mechanisms. Phys-iological Reviews, 88(1), 287–332. https://doi.org/10.1152/physrev.00015.2007

Azizbeigi, K., Azarbayjani, M. A., Atashak, S., & Stannard, S. R. (2015). Effect of moderate and high resistance training intensity on indices of inflammato-ry and oxidative stress. Research in Sports Medicine, 23(1), 73–87. https://doi.org/10.1080/15438627.2014.975807

Baker, D., Nance, S., & Moore, M. (2001). The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. Journal of Strength and Conditioning Research, 15(1), 20–24. https://doi.org/10.1519/1533-4287(2001)015<0020:TLTMTA>2.0.CO;2

Becker, L., Semmlinger, L., & Rohleder, N. (2021). Resistance training as an acute stressor in healthy young men: associations with heart rate variability, alpha-amylase, and cortisol levels. Stress, 24(3), 318–330. https://doi.org/10.1080/10253890.2020.1799193

Bermejo, J. L., Valldecabres, R., Villarrasa-Sapiña, I., Monfort-Torres, G., Marco-Ahulló, A., & Ribeiro Do Couto, B. (2022). Increased cortisol levels caused by acute resistance physical exercise impair memory and learning ability. PeerJ, 10, e13000. https://doi.org/10.7717/PEERJ.13000/SUPP-1

Borgenvik, M., Apró, W., & Blomstrand, E. (2012). Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. American Jour-nal of Physiology - Endocrinology and Metabolism, 302(5), E510–E521. https://doi.org/10.1152/ajpendo.00353.2011

Burd, N. A., Andrews, R. J., West, D. W., Little, J. P., Cochran, A. J., Hector, A. J., Cashaback, J. G., Gibala, M. J., Potvin, J. R., Baker, S. K., & Phillips, S. M. (2012). Muscle time under tension during re-sistance exercise stimulates differential muscle pro-tein sub-fractional synthetic responses in men. Journal of Physiology, 590(2), 351–362. https://doi.org/10.1113/jphysiol.2011.221200

Cairns, S. P., Knicker, A. J., Thompson, M. W., & Sjøgaard, G. (2005). Evaluation of models used to study neuromuscular fatigue. Exercise and Sport Scienc-es Reviews, 33(1), 9–16.

Crewther, B., Keogh, J., Cronin, J., & Cook, C. (2006). Possible stimuli for strength and power adaptation: acute hormonal responses. Sports Medicine (Auckland, N.Z.), 36(3), 215–238. https://doi.org/10.2165/00007256-200636030-00004

Crewther, B. T., Al-Dujaili, E., Smail, N. F., Anasta-sova, S., Kilduff, L. P., & Cook, C. J. (2013). Moni-toring salivary testosterone and cortisol concentra-tions across an international sports competition: Data comparison using two enzyme immunoassays and two sample preparations. Clinical Biochemistry, 46(4–5), 354–358. https://doi.org/10.1016/j.clinbiochem.2012.11.019

Crewther, B. T., Lowe, T., Weatherby, R. P., Gill, N., & Keogh, J. (2009). Neuromuscular performance of elite rugby union players and relationships with sali-vary hormones. Journal of Strength and Conditioning Research, 23(7), 2046–2053. https://doi.org/10.1519/JSC.0b013e3181b73c19

Crewther, B. T., Obmiński, Z., & Cook, C. J. (2018). Serum cortisol as a moderator of the relationship be-tween serum testosterone and Olympic weightlifting performance in real and simulated competitions. Bi-ology of Sport, 35(3), 215–221. https://doi.org/10.5114/biolsport.2018.74632

Cronin, J., McNair, P. J., & Marshall, R. N. (2001). Developing explosive power: A comparison of tech-nique and training. Journal of Science and Medicine in Sport, 4(1), 59–70. https://doi.org/10.1016/S1440-2440(01)80008-6

Freeman, P. R., Hedges, L. V., & Olkin, I. (1986). Sta-tistical Methods for Meta-Analysis. Biometrics, 42(2), 454-454. https://doi.org/10.2307/2531069

García-Ramos, A., Pestaña-Melero, F. L., Pérez-Castilla, A., Rojas, F. J., & Gregory Haff, G. (2018). Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press rela-tive load with higher reliability? Journal of Strength and Conditioning Research, 32(5), 1273–1279. https://doi.org/10.1519/JSC.0000000000001998

García-Ramos, A., Torrejón, A., Feriche, B., Morales-Artacho, A. J., Pérez-Castilla, A., Padial, P., & Haff, G. G. (2018). Prediction of the maximum number of repetitions and repetitions in reserve from barbell ve-locity. International Journal of Sports Physiology and Per-formance, 13(3), 353–359. https://doi.org/10.1123/ijspp.2017-0302

Gatti, R., & De Palo, E. F. (2011). An update: Salivary hormones and physical exercise. Scandinavian Journal of Medicine and Science in Sports, 21(2), 157–169. https://doi.org/10.1111/j.1600-0838.2010.01252.x

González-Badillo, J. J., & Gorostiaga-Ayestarán, E. (2002). Fundamentos del entrenamiento de la fuerza: Aplicación al alto rendimiento deportivo. Inde.

González-Badillo, J. J., Marques, M. C., & Sánchez-Medina, L. (2011). The importance of movement ve-locity as a measure to control resistance training in-tensity. Journal of Human Kinetics, Special Issue, 15–19. https://doi.org/10.2478/v10078-011-0053-6

González-Badillo, J. J., & Sánchez-Medina, L. (2010). Movement Velocity as a Measure of Loading Intensi-ty in Resistance Training. International Journal of Sports Medicine, 31(05), 347–352. https://doi.org/10.1055/s-0030-1248333

Guez-Rosell, D. R., Yanez-Garcia, J. M., Sanchez-Medina, L., Mora-Custodio, R., & Lez-Badillo, J. J. G. (2020). Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. Journal of Strength and Conditioning Research, 34(9), 2537–2547. https://doi.org/10.1519/JSC.0000000000002881

Hall, J. E., & Hall, M. E. (2020). Guyton and Hall text-book of medical physiology e-Book. Elsevier Health Sci-ences.

Hamdi, M. M., & Mutungi, G. (2010). Dihydrotestos-terone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres. Jour-nal of Physiology, 588(3), 511–525. https://doi.org/10.1113/jphysiol.2009.182162

Hedges, L. V., & Pigott, T. D. (2004). The power of statistical tests for moderators in meta-analysis. Psy-chological Methods, 9(4), 426–445. https://doi.org/10.1037/1082-989X.9.4.426

Hellhammer, D. H., Wüst, S., & Kudielka, B. M. (2009). Salivary cortisol as a biomarker in stress re-search. Psychoneuroendocrinology, 34(2), 163–171. https://doi.org/10.1016/j.psyneuen.2008.10.026

Jones, D. A. (2010). Changes in the force-velocity rela-tionship of fatigued muscle: implications for power production and possible causes. Journal of Physiology, 588(16), 2977–2986. https://doi.org/10.1113/jphysiol.2010.190934

Kraemer, W. J., & Mazzetti, S. A. (2003). Hormonal Mechanisms Related to the Expression of Muscular Strength and Power. In P. V. Komi (Ed.), Strength and Power in Sport (Second, pp. 73–95). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470757215.CH5

Legaz-Arrese, A., Reverter-masía, J., Munguía-Izquierdo, D., & Ceballos-Gurrola, O. (2007). An analysis of resistance training based on the mainte-nance of mechanical power. Journal of Sports Medicine and Physical Fitness, 47(4), 427–436.

Loturco, I., Kobal, R., Moraes, J. E., Kitamura, K., Cal Abad, C. C., Pereira, L. A., & Nakamura, F. Y. (2017). Predicting the maximum dynamic strength in bench press: The high precision of the bar velocity approach. Journal of Strength and Conditioning Re-search, 31(4), 1127–1131. https://doi.org/10.1519/JSC.0000000000001670

Mangine, G. T., Hoffman, J. R., Gonzalez, A. M., Townsend, J. R., Wells, A. J., Jajtner, A. R., Beyer, K. S., Boone, C. H., Miramonti, A. A., Wang, R., LaMonica, M. B., Fukuda, D. H., Ratamess, N. A., & Stout, J. R. (2015). The effect of training volume and intensity on improvements in muscular strength and size in resistance-trained men. Physiological Re-ports, 3(8). https://doi.org/10.14814/phy2.12472

McCaulley, G. O., McBride, J. M., Cormie, P., Hud-son, M. B., Nuzzo, J. L., Quindry, J. C., & Travis Triplett, N. (2009). Acute hormonal and neuromus-cular responses to hypertrophy, strength and power type resistane exercise. European Journal of Applied Physiology, 105(5), 695–704. https://doi.org/10.1007/s00421-008-0951-z

McGuigan, M. R., Egan, A. D., & Foster, C. (2004). Salivary cortisol responses and perceived exertion during high intensity and low intensity bouts of re-sistance exercise. Journal of Sports Science and Medi-cine, 3(1), 8–15.

McMillian, D. J., Moore, J. H., Hatler, B. S., & Taylor, D. C. (2006). Dynamic vs. static-stretching warm up: The effect on power and agility performance. Journal of Strength and Conditioning Research, 20(3), 492–499. https://doi.org/10.1519/18205.1

Papacosta, E., & Nassis, G. P. (2011). Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. Journal of Science and Medicine in Sport, 14(5), 424–434. https://doi.org/10.1016/j.jsams.2011.03.004

Pareja-Blanco, F., Rodríguez-Rosell, D., Sánchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Yáñez-García, J. M., Morales-Alamo, D., Pérez-Suárez, I., Calbet, J. A. L., & González-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scandinavian Journal of Medicine and Science in Sports, 27(7), 724–735. https://doi.org/10.1111/sms.12678

Rhea, M. R. (2004). Determining the Magnitude of Treatment Effects in Strength Training Research Through the Use of the Effect Size Matthew. Journal of Strength and Conditioning Research, 18(4), 918–920.

Rhen, T., & Cidlowski, J. A. (2005). Antiinflammatory action of glucocorticoids - New mechanisms for old drugs. New England Journal of Medicine, 353(16), 1711-1723+1658. https://doi.org/10.1056/NEJMra050541

Sánchez-Medina, L., & González-Badillo, J. J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Medicine and Science in Sports and Exercise, 43(9), 1725–1734. https://doi.org/10.1249/mss.0b013e318213f880

Sánchez-Medina, L., González-Badillo, J. J., Pérez, C. E., & Pallarés, J. G. (2014). Velocity- and power-load relationships of the bench pull vs bench press exercises. International Journal of Sports Medicine, 35(3), 209–216. https://doi.org/10.1055/s-0033-1351252

Sarabia, J. M., Fernandez-Fernandez, J., Juan-Recio, C., Hernández-Davó, H., Urbán, T., & Moya, M. (2015). Mechanical, hormonal and psychological ef-fects of a non-failure short-term strength training program in young tennis players. Journal of Human Ki-netics, 45(1), 81–91. https://doi.org/10.1515/hukin-2015-0009

Sarabia, J. M., Moya-Ramón, M., Hernández-Davó, J. L., Fernandez-Fernandez, J., & Sabido, R. (2017). The effects of training with loads that maximise pow-er output and individualised repetitions vs. traditional power training. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0186601

Soriano, M. A., Jiménez-Reyes, P., Rhea, M. R., & Ma-rín, P. J. (2015). The optimal load for maximal power production during lower-body resistance ex-ercises: a meta-analysis. Sports Medicine, 45(8), 1191–1205. https://doi.org/10.1007/s40279-015-0341-8

Stock, M. S., Beck, T. W., Defreitas, J. M., & Dillon, M. A. (2010). Relationships among peak power output, peak bar velocity, and mechanomyographic ampli-tude during the free-weight bench press exercise. Journal of Sports Sciences, 28(12), 1309–1317. https://doi.org/10.1080/02640414.2010.499440

Stokes, K. A., Gilbert, K. L., Hall, G. M., Andrews, R. C., & Thompson, D. (2013). Different responses of selected hormones to three types of exercise in young men. European Journal of Applied Physiology, 113(3), 775–783.

Trybulski, R., Gepfert, M., Gawel, D., Bichowska, M., Fostiak, K., Wojdala, G., Trybek, G., Krzysztofik, M., & Wilk, M. (2022). Impact of movement tempo on bar velocity and time under tension in resistance exercises with different external loads. Biology of Sport, 39(3), 547–554. https://doi.org/10.5114/biolsport.2022.106160

Viru, A. M., Hackney, A. C., Välja, E., Karelson, K., Janson, T., & Viru, M. (2001). Influence of pro-longed continuous exercise on hormone responses to subsequent exercise in humans. European Journal of Applied Physiology, 85(6), 578–585. https://doi.org/10.1007/s004210100498

Walker, S., Häkkinen, K., Virtanen, R., Mane, S., Bachero-Mena, B., & Pareja-Blanco, F. (2022). Acute neuromuscular and hormonal responses to 20 versus 40% velocity loss in males and females be-fore and after 8 weeks of velocity-loss resistance training. Experimental Physiology, 107(9), 1046–1060. https://doi.org/10.1113/EP090371

Wing, S. S., & Goldberg, A. L. (1993). Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. The American Journal of Physiology, 264(4 Pt 1), E668–E676. https://doi.org/10.1152/AJPENDO.1993.264.4.E668

Descargas

Publicado

2024-12-01

Cómo citar

García-Valverde, A., Pastor, D., Raya-González, J., & Moya-Ramón, M. (2024). Caracterización de diferentes cargas con el mismo porcentaje de pérdida de velocidad en el ejercicio de lanzamiento en press de banca (Characterizing different loads with the same velocity loss percentage in the bench press throw exercise). Retos, 61, 677–684. https://doi.org/10.47197/retos.v61.106268

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a