O treinamento de resistência de intensidade moderada tem maiores efeitos na supressão da secreção de estresse oxidativo do que o treinamento de força em estudantes obesos

Autores

  • Gigih Siantoro Universitas Negeri Surabaya
  • Dwi Cahyo Kartiko Department of Physical Education, Health & Recreation, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Muhammad Muhammad Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Yanyong Phanpheng Sports and Exercise Science Program, Faculty of Science and Technology, Loei Rajabhat University https://orcid.org/0000-0002-9290-2479
  • Bayu Agung Pramono Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • I Dewa Made Aryananda Wijaya Kusuma Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya https://orcid.org/0000-0002-4939-7294
  • Yanuar Alfan Triardhana Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Bhekti Lestari Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Fajar Eka Samudra Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya https://orcid.org/0009-0009-4159-4048
  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-4080-9245

DOI:

https://doi.org/10.47197/retos.v57.105307

Palavras-chave:

Endurance training, MDA levels, obesity, oxidative stress, strength training

Resumo

O objetivo desta pesquisa é estabelecer o impacto do treinamento resistido de intensidade moderada e dos exercícios resistidos na mitigação do estresse oxidativo em estudantes com obesidade. A pesquisa envolveu uma coorte de 30 estudantes do sexo feminino, caracterizadas por obesidade, com idade média de 22,30±1,92 anos e índice de massa corporal (IMC) de 31,77±2,72 kg/m2. Esses participantes foram distribuídos aleatoriamente em três grupos diferentes: o grupo controle (CN, n=10), o grupo de treinamento de resistência (TE, n=10) e o grupo de treinamento de força (ST, n=10). . A intervenção envolvendo treinamento resistido foi executada em nível de intensidade de 60-70% da FCmáx, e cada sessão de treinamento durou entre 40 e 60 minutos. Enquanto o regime de treinamento de força foi implementado com intensidade de carga de 60-70% de 1RM, 4-6 séries e 12-15 repetições para cada série. A intervenção foi administrada regularmente três vezes por semana durante quatro semanas. A coleta de dados foi realizada por meio de coleta de amostras de sangue antes e 24 horas após a última intervenção; a análise dos níveis de MDA pela técnica TBAR serviu como indicador de estresse oxidativo. A técnica utilizada para análise dos dados foi o teste ANOVA, seguido do teste post hoc LSD com nível significativo (p≤0,05). Os resultados mostraram que os níveis médios pré-MDA em CN, ET e ST foram (31,07±5,97, 32,12±8,91 e 31,36±8,52 ng/mL) respectivamente p=0,953. Os níveis médios pós-MDA em CN, ET e ST foram (32,14±11,46, 15,21±8,01 e 22,02±7,33 ng/mL) respectivamente p=0,001. Os níveis médios de delta MDA em CN, ET e ST foram (1,08±14,83, -16,91±9,68 e -9,34±7,51 ng/mL) respectivamente p=0,005. As alterações médias nos níveis de MDA em CN, ET e ST foram (9,09±48,42, -51,71±24,77 e -27,85±25,31%) respectivamente p=0,002. As nossas descobertas revelaram que tanto as intervenções de treino de resistência como de força resultaram numa redução do stress oxidativo, como evidenciado pela diminuição observada nos níveis de MDA após as sessões de treino. No entanto, a intervenção do treino de resistência tem um efeito maior na supressão da secreção de stress oxidativo do que o treino de força em estudantes obesos.

Palavras-chave: Treinamento resistido, níveis de MDA, obesidade, estresse oxidativo, treinamento de força.

Referências

Accattato, F., Greco, M., Pullano, S. A., Carè, I., Fiorillo, A. S., Pujia, A., Montalcini, T., Foti, D. P., Brunetti, A., & Gullet-ta, E. (2017). Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PloS one, 12(6), e0178900. https://doi.org/10.1371/journal.pone.0178900.

Almuraikhy, S., Doudin, A., Domling, A., Althani, A. A. J. F., & Elrayess, M. A. (2024). Molecular regulators of exercise-mediated insulin sensitivity in non-obese individuals. Journal of cellular and molecular medicine, 28(1), e18015. https://doi.org/10.1111/jcmm.18015.

Bacanoiu, M. V., Danoiu, M., Rusu, L., & Marin, M. I. (2023). New Directions to Approach Oxidative Stress Related to Physical Activity and Nutraceuticals in Normal Aging and Neurodegenerative Aging. Antioxidants (Basel, Switzerland), 12(5), 1008. https://doi.org/10.3390/antiox12051008.

Benito, P. J., Alvarez-Sánchez, M., Díaz, V., Morencos, E., Peinado, A. B., Cupeiro, R., Maffulli, N., & PRONAF Study Group (2016). Cardiovascular Fitness and Energy Expenditure Response during a Combined Aerobic and Circuit Weight Training Protocol. PloS one, 11(11), e0164349. https://doi.org/10.1371/journal.pone.0164349.

Bhutia, Y., Ghosh, A., Sherpa, M. L., Pal, R., & Mohanta, P. K. (2011). Serum malondialdehyde level: Surrogate stress marker in the Sikkimese diabetics. Journal of natural science, biology, and medicine, 2(1), 107–112. https://doi.org/10.4103/0976-9668.82309.

Bouviere, J., Fortunato, R. S., Dupuy, C., Werneck-de-Castro, J. P., Carvalho, D. P., & Louzada, R. A. (2021). Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel, Switzerland), 10(4), 537. https://doi.org/10.3390/antiox10040537.

Čolak, E., & Pap, D. (2021). The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. Journal of Medical Biochemistry, 40(1), 1–9. https://doi.org/10.5937/jomb0-24652.

Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., Esposito, K., Jönsson, L. S., Kolb, H., Lansink, M., Marcos, A., Margioris, A., Matusheski, N., Nordmann, H., O’Brien, J., Pugliese, G., Rizkalla, S., Schalk-wijk, C., Tuomilehto, J., & Wärnberg, J. (2011). Dietary factors and low-grade inflammation in relation to overweight and obesity. British Journal of Nutrition, 106(S3), S5–S78. https://doi.org/10.1017/s0007114511005460.

Colombo, G., Reggiani, F., Angelini, C., Finazzi, S., Astori, E., Garavaglia, M. L., Landoni, L., Portinaro, N. M., Giustarini, D., Rossi, R., Santucci, A., Milzani, A., Badalamenti, S., & Dalle-Donne, I. (2020). Plasma Protein Carbonyls as Bi-omarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. Oxidative Medicine and Cellular Longevity, 2020, 1–20. https://doi.org/10.1155/2020/2975256.

Chatgilialoglu C. (2024). Biomarkers of Oxidative and Radical Stress. Biomolecules, 14(2), 194. https://doi.org/10.3390/biom14020194.

Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P. L. (2023). Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules (Basel, Switzerland), 28(16), 5979. https://doi.org/10.3390/molecules28165979.

D'Aiuto, N., Hochmann, J., Millán, M., Di Paolo, A., Bologna-Molina, R., Sotelo Silveira, J., & Arocena, M. (2022). Hy-poxia, acidification and oxidative stress in cells cultured at large distances from an oxygen source. Scientific reports, 12(1), 21699. https://doi.org/10.1038/s41598-022-26205-y.

Diaba-Nuhoho, P., Ofori, E. K., Asare-Anane, H., Oppong, S. Y., Boamah, I., & Blackhurst, D. (2018). Impact of exercise intensity on oxidative stress and selected metabolic markers in young adults in Ghana. BMC research notes, 11(1), 634. https://doi.org/10.1186/s13104-018-3758-y.

Gutiérrez-López, L., Olivares-Corichi, I. M., Martínez-Arellanes, L. Y., Mejía-Muñoz, E., Polanco-Fierro, J. A., & García-Sánchez, J. R. (2021). A moderate intensity exercise program improves physical function and oxidative damage in old-er women with and without sarcopenic obesity. Experimental gerontology, 150, 111360. https://doi.org/10.1016/j.exger.2021.111360.

Hagberg, C. E., & Spalding, K. L. (2024). White adipocyte dysfunction and obesity-associated pathologies in hu-mans. Nature Reviews Molecular Cell Biology, 25(4), 270–289. https://doi.org/10.1038/s41580-023-00680-1.

Husain, S., Hillmann, K., Hengst, K., & Englert, H. (2023). Effects of a lifestyle intervention on the biomarkers of oxida-tive stress in non-communicable diseases: A systematic review. Frontiers in Aging, 4. https://doi.org/10.3389/fragi.2023.1085511.

Jiang, S., Liu, H., & Li, C. (2021). Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods (Basel, Switzerland), 10(8), 1854. https://doi.org/10.3390/foods10081854.

Jiang, J., Ni, L., Zhang, X., Gokulnath, P., Vulugundam, G., Li, G., Wang, H., & Xiao, J. (2023). Moderate-Intensity Exer-cise Maintains Redox Homeostasis for Cardiovascular Health. Advanced biology, 7(4), e2200204. https://doi.org/10.1002/adbi.202200204.

Kawai, T., Autieri, M. V., & Scalia, R. (2021). Adipose tissue inflammation and metabolic dysfunction in obesity. American Journal of Physiology-Cell Physiology, 320(3), C375–C391. https://doi.org/10.1152/ajpcell.00379.2020.

Kościuszko, M., Buczyńska, A., Katarzyna Łuka, Duraj, E., Katarzyna Żuk-Czerniawska, Agnieszka Adamska, Katarzyna Siewko, Wiatr, A., Adam Jacek Krętowski, & Popławska-Kita, A. (2024). Assessing the impact of body composition, metabolic and oxidative stress parameters on insulin resistance as a prognostic marker for reactive hypoglycemia: a cross-sectional study in overweight, obese, and normal weight individuals. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1329802.

Li, C., Feng, F., Xiong, X., Li, R., & Chen, N. (2017). Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity. Journal of Sports Sciences, 35(7), 663–668. https://doi.org/10.1080/02640414.2016.1183807.

Lu, Z., Xu, Y., Song, Y., Bíró, I., & Gu, Y. (2021a). A Mixed Comparisons of Different Intensities and Types of Physical Exercise in Patients With Diseases Related to Oxidative Stress: A Systematic Review and Network Meta-Analysis. Frontiers in physiology, 12, 700055. https://doi.org/10.3389/fphys.2021.700055.

Lu, Y., Wiltshire, H. D., Baker, J. S., & Wang, Q. (2021b). Effects of High Intensity Exercise on Oxidative Stress and Anti-oxidant Status in Untrained Humans: A Systematic Review. Biology, 10(12), 1272. https://doi.org/10.3390/biology10121272.

Manna, P., & Jain, S. K. (2015). Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic syndrome and related disorders, 13(10), 423–444. https://doi.org/10.1089/met.2015.0095.

Marseglia, L., Manti, S., D'Angelo, G., Nicotera, A., Parisi, E., Di Rosa, G., Gitto, E., & Arrigo, T. (2014). Oxidative stress in obesity: a critical component in human diseases. International journal of molecular sciences, 16(1), 378–400. https://doi.org/10.3390/ijms16010378.

Martínez-Martínez, E., & Cachofeiro, V. (2022). Oxidative Stress in Obesity. Antioxidants (Basel, Switzerland), 11(4), 639. https://doi.org/10.3390/antiox11040639.

Messineo, S., Laria, A. E., Arcidiacono, B., Chiefari, E., Luque Huertas, R. M., Foti, D. P., & Brunetti, A. (2016). Cooper-ation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes. Frontiers in endocrinology, 7, 73. https://doi.org/10.3389/fendo.2016.00073.

Palma, G., Sorice, G. P., Genchi, V. A., Giordano, F., Caccioppoli, C., D'Oria, R., Marrano, N., Biondi, G., Giorgino, F., & Perrini, S. (2022). Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. International journal of molecu-lar sciences, 23(13), 7349. https://doi.org/10.3390/ijms23137349.

Park, S.Y. and Kwak, Y.S. (2016). Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. Journal of Exercise Rehabilitation, 12(2), 113–118. http://dx.doi.org/10.12965/jer.1632598.299.

Powers, S. K., Goldstein, E., Schrager, M., & Ji, L. L. (2022). Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants (Basel, Switzerland), 12(1), 39. https://doi.org/10.3390/antiox12010039.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., & Yamaoka, Y. (2023). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.

Roh, H. T., Cho, S. Y., & So, W. Y. (2017). Obesity promotes oxidative stress and exacerbates blood-brain barrier disrup-tion after high-intensity exercise. Journal of sport and health science, 6(2), 225–230. https://doi.org/10.1016/j.jshs.2016.06.005.

Roh, H. T., Cho, S. Y., & So, W. Y. (2020). Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. International journal of environmental research and public health, 17(7), 2505. https://doi.org/10.3390/ijerph17072505.

Savini, I., Catani, M. V., Evangelista, D., Gasperi, V., & Avigliano, L. (2013). Obesity-associated oxidative stress: strategies finalized to improve redox state. International journal of molecular sciences, 14(5), 10497–10538. https://doi.org/10.3390/ijms140510497.

Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative Stress. Annual review of biochemistry, 86, 715–748. https://doi.org/10.1146/annurev-biochem-061516-045037.

Tan, B. L., & Norhaizan, M. E. (2019). Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients, 11(11), 2579. https://doi.org/10.3390/nu11112579.

Thirupathi, A., Wang, M., Lin, J. K., Fekete, G., István, B., Baker, J. S., & Gu, Y. (2021). Effect of Different Exercise Mo-dalities on Oxidative Stress: A Systematic Review. BioMed research international, 2021, 1947928. https://doi.org/10.1155/2021/1947928.

Thomas, D. T., DelCimmuto, N. R., Flack, K. D., Stec, D. E., & Hinds, T. D., Jr (2022). Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Ba-sel, Switzerland), 11(2), 179. https://doi.org/10.3390/antiox11020179.

Vincent, H. K., Bourguignon, C. M., Vincent, K. R., Weltman, A. L., Bryant, M., & Taylor, A. G. (2006). Antioxidant sup-plementation lowers exercise-induced oxidative stress in young obese adults. Obesity (Silver Spring, Md.), 14(12), 2224–2235. https://doi.org/10.1038/oby.2006.261.

Wang, Y., Luo, D., Jiang, H., Song, Y., Wang, Z., Shao, L., & Liu, Y. (2023). Effects of physical exercise on biomarkers of oxidative stress in healthy subjects: A meta-analysis of randomized controlled trials. Open life sciences, 18(1), 20220668. https://doi.org/10.1515/biol-2022-0668.

Wen, X., Zhang, B., Wu, B., Xiao, H., Li, Z., Li, R., Xu, X., & Li, T. (2022). Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal transduction and targeted therapy, 7(1), 298. https://doi.org/10.1038/s41392-022-01149-x.

Yosika, G.F., Sukoco, P., Pranoto, A., & Purwoto, S. P. (2020). Serum malondialdehyde decreases after moderate interval and continuous morning exercise in obese females. Jurnal SPORTIF : Jurnal Penelitian Pembelajaran, 6(2), 288-303. https://doi.org/10.29407/js_unpgri.vi.14289.

Zare, M., Niloofar Shoaei, Karimian, J., Nouri, M., Zare, S., Kimia Leilami, Zainab Shateri, Parvin Sarbakhsh, Moham-mad Hasan Eftekhari, & Bahram Pourghassem Gargari. (2024). Effect of a plant-based diet on oxidative stress bi-omarkers in male footballers. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54198-3.

Zatterale, F., Longo, M., Naderi, J., Raciti, G. A., Desiderio, A., Miele, C., & Beguinot, F. (2020). Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01607.

Downloads

Publicado

2024-06-11

Como Citar

Siantoro, G., Kartiko, D. C., Muhammad, M., Phanpheng, Y., Pramono, B. A., Kusuma, I. D. M. A. W., Triardhana, Y. A., Lestari, B., Samudra, F. E., & Pranoto, A. (2024). O treinamento de resistência de intensidade moderada tem maiores efeitos na supressão da secreção de estresse oxidativo do que o treinamento de força em estudantes obesos. Retos, 57, 291–297. https://doi.org/10.47197/retos.v57.105307

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>