Impacto de la combinación de alimentación con restricción de tiempo y ejercicio aeróbico en la promoción de los niveles de mioquinas y la mejora de la composición corporal en mujeres obesas (Impact of Time-Resricted Feeding and Aerobic Exercise Combination on Promotes Myokine Levels and Improve Body Composition in Obese Women)


  • Afdhalia Rahma Sari Sport Health Science, Faculty of Medicine, Universitas Airlangga
  • Rifat Danendra Risdayanto Medical Program, Faculty of Medicine, Universitas Airlangga
  • Mohammad Haidar Pradipta Medical Program, Faculty of Medicine, Universitas Airlangga
  • Uais Al Qorni Sport Health Science, Faculty of Medicine, Universitas Airlangga
  • Purwo Sri Rejeki Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga
  • Raden Argarini Physiology Division, Department of Medical Physiology and Biochemistry, Universitas Airlangga
  • Shariff Halim Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang
  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga


Palabras clave:

Body composition, exercise, myokine, obesity, time-restricted feeding


Se ha demostrado que la obesidad es la causa de diversas enfermedades crónicas que pueden aumentar el riesgo de muerte prematura. Cambiar el estilo de vida mediante la dieta y el ejercicio es la mejor manera de superar el riesgo de obesidad. Este estudio tiene como objetivo demostrar el efecto de una combinación de alimentación con restricción de tiempo con ejercicio aeróbico de intensidad moderada sobre el aumento de los niveles de miocinas y la mejora de la composición corporal en mujeres obesas. Un total de 28 mujeres obesas de entre 20 y 30 años participaron en el estudio y recibieron intervenciones de alimentación restringida en el tiempo (TRG) y de alimentación restringida en el tiempo y ejercicio (TREXG) durante 2 semanas. Se utilizó ELISA para medir los niveles de PGC-1α e irisina en todas las muestras, mientras que TANITA DC-360 se utilizó para medir la composición corporal en los tres grupos TRG, TREXG y el grupo de control (CG). Los resultados mostraron un aumento en ∆PGC-1α entre los grupos de GC (0,25±2,29 ng/mL) vs TRG (1,64±3,56 ng/mL) vs TREXG (3,68±1,15 ng/mL) y p=0,031. También se encontró que Δirisina aumenta entre CG (405,01 ± 215,71 pg/ml) frente a TRG (1443,92 ± 1761,43 pg/ml) frente a TREXG (3408,15 ± 1299,85 pg/ml) y p = 0,004. Se descubrió que TREXG mejoró la composición corporal en comparación con TRG y CG. El principal hallazgo de este estudio fue un aumento en los niveles de mioquinas, concretamente los niveles de PGC-1α e irisina, y hubo una mejora en la composición corporal en el grupo de ejercicio y alimentación restringida en el tiempo en comparación con el grupo de alimentación restringida en el tiempo y el grupo de control. en mujeres obesas.

Palabras clave: composición corporal, ejercicio, mioquinas, obesidad, alimentación restringida en el tiempo.

Abstract. Obesity has been proven to be the cause of various chronic diseases which can increase the risk of premature death. Changing lifestyle through diet and exercise is the best way to overcome the risk of obesity. This study aims to prove the effect of a combination of time-restricted feeding with moderate intensity aerobic exercise on increasing levels of myokines and improving body composition in obese women. A total of 28 obese women aged 20-30 years were involved in the study and were given time-restricted feeding (TRG) and time-restricted feeding and exercise (TREXG) interventions for 2 weeks. ELISA was used to measure PGC-1α and irisin levels in all samples, while TANITA DC-360 was used to measure body composition in the three groups TRG, TREXG, and the control group (CG). The results showed an increase in ∆PGC-1α between CG groups (0.25±2.29 ng/mL) vs TRG (1.64±3.56 ng/mL) vs TREXG (3.68±1.15 ng/mL) and p=0.031. ΔIrisin was also found to increase between CG (405.01±215.71 pg/mL) vs TRG (1443.92±1761.43 pg/mL) vs TREXG (3408.15±1299.85 pg/mL) and p=0.004. TREXG was found to have improved body composition compared to TRG and CG. The main finding of this study was an increase in myokines levels, namely levels of PGC-1α and irisin and there was an improvement in body composition in the time-restricted feeding and exercise group compared to the time restricted-feeding group and the control group in obese women.

Keywords: Body composition, exercise, myokine, obesity, time-restricted feeding



Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett, D. R., Jr., Tudor-Locke, C., . . . Leon, A. S. (2011). 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc, 43(8), 1575-1581. doi:10.1249/MSS.0b013e31821ece12

Antarianto, R. D., Kadharusman, M. M., Wijaya, S., & Hardiny, N. S. (2023). The Impact of Prolonged and Intermittent Fasting on PGC-1α, Oct-4, and CK-19 Liver Gene Expression. Curr Aging Sci, 16(1), 49-55. doi:10.2174/1874609815666220627155337

Anton, S. D., Moehl, K., Donahoo, W. T., Marosi, K., Lee, S. A., Mainous, A. G., 3rd, . . . Mattson, M. P. (2018). Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring), 26(2), 254-268. doi:10.1002/oby.22065

Armstrong, A., Jungbluth Rodriguez, K., Sabag, A., Mavros, Y., Parker, H. M., Keating, S. E., & Johnson, N. A. (2022). Effect of aerobic exercise on waist circumference in adults with overweight or obesity: A systematic review and meta-analysis. Obes Rev, 23(8), e13446. doi:10.1111/obr.13446

Besse-Patin, A., Jeromson, S., Levesque-Damphousse, P., Secco, B., Laplante, M., & Estall, J. L. (2019). PGC1A regulates the IRS1:IRS2 ratio during fasting to influence hepatic metabolism downstream of insulin. Proceedings of the National Academy of Sciences, 116(10), 4285-4290. doi:doi:10.1073/pnas.1815150116

Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., . . . Long, J. Z. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463-468.

Catalano-Iniesta, L., Sánchez Robledo, V., Iglesias-Osma, M. C., Galán Albiñana, A., Carrero, S., Blanco, E. J., . . . García-Barrado, M. J. (2020). Evidences for Expression and Location of ANGPTL8 in Human Adipose Tissue. Journal of Clinical Medicine, 9(2), 512. Retrieved from

Chatterjee, A., Gerdes, M. W., & Martinez, S. G. (2020). Identification of Risk Factors Associated with Obesity and Overweight—A Machine Learning Overview. Sensors, 20(9), 2734. Retrieved from

Chen, J. H., Lu, L. W., Ge, Q., Feng, D., Yu, J., Liu, B., . . . Chen, F. (2021). Missing puzzle pieces of time-restricted-eating (TRE) as a long-term weight-loss strategy in overweight and obese people? A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr, 1-17. doi:10.1080/10408398.2021.1974335

Cienfuegos, S., Gabel, K., Kalam, F., Ezpeleta, M., Wiseman, E., Pavlou, V., . . . Varady, K. A. (2020). Effects of 4- and 6-h Time-Restricted Feeding on Weight and Cardiometabolic Health: A Randomized Controlled Trial in Adults with Obesity. Cell Metab, 32(3), 366-378.e363. doi:10.1016/j.cmet.2020.06.018

Daskalopoulou, S. S., Cooke, A. B., Gomez, Y. H., Mutter, A. F., Filippaios, A., Mesfum, E. T., & Mantzoros, C. S. (2014). Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol, 171(3), 343-352. doi:10.1530/eje-14-0204

de Cabo, R., & Mattson, M. P. (2019). Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med, 381(26), 2541-2551. doi:10.1056/NEJMra1905136

Devi, A. I., Rejeki, P. S., Argarini, R., Shakila, N., Yosnengsih, Y., Ilmi, S. B. Z., . . . Herawati, L. (2023). Respuesta de los niveles de TNF-α y niveles de glucosa en sangre después del ejercicio agudo intermitente de alta intensidad en mujeres con sobrepeso (Response of TNF-α Levels and Blood Glucose Levels after Acute High-Intensity Intermittent Exercise in Overweight Women). Retos, 48, 101-105. doi:10.47197/retos.v48.94305

Dinas, P. C., Lahart, I. M., Timmons, J. A., Svensson, P. A., Koutedakis, Y., Flouris, A. D., & Metsios, G. S. (2017). Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review. F1000Res, 6, 286. doi:10.12688/f1000research.11107.2

Esad Tezcan, M., Uçar, H. N., & Vatansev, H. (2022). Increased uncoupling protein 1 levels are associated with attention deficit and hyperactivity disorder in medication-free children. Journal of psychiatric research, 156, 437–443.

Günbatar, N., & Bulduk, B. (2023). Examination of the Relationship Between Intermittent Fasting and Irisin Levels in Rats Fed on a High-Fat Diet. Eastern J Med, 28(2), 232-236. doi:10.5505/ejm.2023.81236

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nat Metab, 2(9), 817-828. doi:10.1038/s42255-020-0251-4

Heinonen, S., Buzkova, J., Muniandy, M., Kaksonen, R., Ollikainen, M., Ismail, K., . . . Pietiläinen, K. H. (2015). Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes, 64(9), 3135-3145. doi:10.2337/db14-1937

Hill, J. O., Wyatt, H. R., & Peters, J. C. (2012). Energy balance and obesity. Circulation, 126(1), 126-132. doi:10.1161/circulationaha.111.087213

Hruby, A., & Hu, F. B. (2015). The Epidemiology of Obesity: A Big Picture. PharmacoEconomics, 33(7), 673-689. doi:10.1007/s40273-014-0243-x

Inoue, K., Fujie, S., Hasegawa, N., Horii, N., Uchida, M., Iemitsu, K., . . . Iemitsu, M. (2020). Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity. Appl Physiol Nutr Metab, 45(7), 715-722. doi:10.1139/apnm-2019-0602

Jeukendrup, A., & Gleeson, M. (2019). Sport Nutrition-3rd Edition: Human Kinetics.

Jung, S., & Kim, K. (2014). Exercise-induced PGC-1α transcriptional factors in skeletal muscle. Integr Med Res, 3(4), 155-160. doi:10.1016/j.imr.2014.09.004

Kang, J., Ratamess, N. A., Faigenbaum, A. D., Bush, J. A., Beller, N., Vargas, A., . . . Andriopoulos, T. (2022). Effect of Time-Restricted Feeding on Anthropometric, Metabolic, and Fitness Parameters: A Systematic Review. J Am Nutr Assoc, 41(8), 810-825. doi:10.1080/07315724.2021.1958719

Karras, S. N., Koufakis, T., Adamidou, L., Dimakopoulos, G., Karalazou, P., Thisiadou, K., . . . Kotsa, K. (2021). Effects of Christian Orthodox Fasting Versus Time-Restricted Eating on Plasma Irisin Concentrations Among Overweight Metabolically Healthy Individuals. Nutrients, 13(4). doi:10.3390/nu13041071

Kartono, D., Hardinsyah, H., Jahari, A., Sulaeman, A., Astuti, M., Soekatri, M., & Riyadi, H. (2012). Ringkasan - Angka Kecukupan Gizi (AKG) yang Dianjurkan bagi Orang Indonesia 2012.

Kobayashi, M., Deguchi, Y., Nozaki, Y., & Higami, Y. (2021). Contribution of PGC-1α to Obesity- and Caloric Restriction-Related Physiological Changes in White Adipose Tissue. International Journal of Molecular Sciences, 22(11), 6025. Retrieved from

Korkmaz, A., Venojärvi, M., Wasenius, N., Manderoos, S., Deruisseau, K. C., Gidlund, E. K., . . . Atalay, M. (2019). Plasma irisin is increased following 12 weeks of Nordic walking and associates with glucose homoeostasis in overweight/obese men with impaired glucose regulation. Eur J Sport Sci, 19(2), 258-266. doi:10.1080/17461391.2018.1506504

Kotarsky, C. J., Johnson, N. R., Mahoney, S. J., Mitchell, S. L., Schimek, R. L., Stastny, S. N., & Hackney, K. J. (2021). Time-restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. Physiol Rep, 9(10), e14868. doi:10.14814/phy2.14868

Kumar, A., Kumar, Y., Sevak, J. K., Kumar, S., Kumar, N., & Gopinath, S. D. (2020). Metabolomic analysis of primary human skeletal muscle cells during myogenic progression. Scientific Reports, 10(1), 11824. doi:10.1038/s41598-020-68796-4

Lao, B. N., Luo, J. H., Xu, X. Y., Fu, L. Z., Tang, F., Ouyang, W. W., . . . Liu, X. S. (2023). Time-restricted feeding's effect on overweight and obese patients with chronic kidney disease stages 3-4: A prospective non-randomized control pilot study. Front Endocrinol (Lausanne), 14, 1096093. doi:10.3389/fendo.2023.1096093

Mathew, H., Castracane, V. D., & Mantzoros, C. (2018). Adipose tissue and reproductive health. Metabolism, 86, 18-32. doi:10.1016/j.metabol.2017.11.006

Mattson, M. P., Allison, D. B., Fontana, L., Harvie, M., Longo, V. D., Malaisse, W. J., . . . Panda, S. (2014). Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A, 111(47), 16647-16653. doi:10.1073/pnas.1413965111

Moraes, R. C. M., Portari, G. V., Ferraz, A. S. M., da Silva, T. E. O., & Marocolo, M. (2017). Effects of intermittent fasting and chronic swimming exercise on body composition and lipid metabolism. Appl Physiol Nutr Metab, 42(12), 1341-1346. doi:10.1139/apnm-2017-0435

Most, J., & Redman, L. M. (2020). Impact of calorie restriction on energy metabolism in humans. Exp Gerontol, 133, 110875. doi:10.1016/j.exger.2020.110875

Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., . . . Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 384(9945), 766-781. doi:10.1016/s0140-6736(14)60460-8

Niemiro, G. M., Rewane, A., & Algotar, A. M. (2023). Exercise and Fitness Effect On Obesity. In StatPearls. Treasure Island (FL): StatPearls Publishing, Copyright © 2023, StatPearls Publishing LLC.

Norheim, F., Langleite, T. M., Hjorth, M., Holen, T., Kielland, A., Stadheim, H. K., . . . Drevon, C. A. (2014). The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. Febs j, 281(3), 739-749. doi:10.1111/febs.12619

Oliveira, L. D. C., Morais, G. P., de Oliveira, F. P., Mata, M. M., Veras, A. S. C., da Rocha, A. L., . . . da Silva, A. S. R. (2023). Intermittent fasting combined with exercise training reduces body mass and alleviates hypothalamic disorders induced by high-fat diet intake. J Nutr Biochem, 119, 109372. doi:10.1016/j.jnutbio.2023.109372

Ouellet, V., Labbé, S. M., Blondin, D. P., Phoenix, S., Guérin, B., Haman, F., . . . Carpentier, A. C. (2012). Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. The Journal of Clinical Investigation, 122(2), 545-552. doi:10.1172/JCI60433

Pan, W. H., & Yeh, W. T. (2008). How to define obesity? Evidence-based multiple action points for public awareness, screening, and treatment: an extension of Asian-Pacific recommendations. Asia Pac J Clin Nutr, 17(3), 370-374.

Patterson, R. E., & Sears, D. D. (2017). Metabolic Effects of Intermittent Fasting. Annu Rev Nutr, 37, 371-393. doi:10.1146/annurev-nutr-071816-064634

Perakakis, N., Triantafyllou, G. A., Fernández-Real, J. M., Huh, J. Y., Park, K. H., Seufert, J., & Mantzoros, C. S. (2017). Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol, 13(6), 324-337. doi:10.1038/nrendo.2016.221

Perissiou, M., Borkoles, E., Kobayashi, K., & Polman, R. (2020). The Effect of an 8 Week Prescribed Exercise and Low-Carbohydrate Diet on Cardiorespiratory Fitness, Body Composition and Cardiometabolic Risk Factors in Obese Individuals: A Randomised Controlled Trial. Nutrients, 12(2), 482. doi:

Pesce, M., Ballerini, P., Paolucci, T., Puca, I., Farzaei, M. H., & Patruno, A. (2020). Irisin and Autophagy: First Update. Int J Mol Sci, 21(20). doi:10.3390/ijms21207587

Petridou, A., Siopi, A., & Mougios, V. (2019). Exercise in the management of obesity. Metabolism, 92, 163-169. doi:10.1016/j.metabol.2018.10.009

Remels, A. H., Gosker, H. R., Bakker, J., Guttridge, D. C., Schols, A. M., & Langen, R. C. (2013). Regulation of skeletal muscle oxidative phenotype by classical NF-κB signalling. Biochim Biophys Acta, 1832(8), 1313-1325. doi:10.1016/j.bbadis.2013.03.018

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., & Yamaoka, Y. (2023). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Ihsan, M., Herawati, L., Rahmanto, I., & Halim, S. (2024). Aerobic Exercise Increases Release of Growth Hormone in the Blood Circulation in Obese Women. Retos, 51, 726–731.

Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel, Switzerland), 11(4), 90.

Rui, L. (2014). Energy metabolism in the liver. Compr Physiol, 4(1), 177-197. doi:10.1002/cphy.c130024

Ruschke, K., Fishbein, L., Dietrich, A., Klöting, N., Tönjes, A., Oberbach, A., . . . Mantzoros, C. S. (2010). Gene expression of PPARgamma and PGC-1alpha in human omental and subcutaneous adipose tissues is related to insulin resistance markers and mediates beneficial effects of physical training. Eur J Endocrinol, 162(3), 515-523. doi:10.1530/eje-09-0767

Santos, H. O., & Macedo, R. C. O. (2018). Impact of intermittent fasting on the lipid profile: Assessment associated with diet and weight loss. Clin Nutr ESPEN, 24, 14-21. doi:10.1016/j.clnesp.2018.01.002

Schroder, J. D., Falqueto, H., Mânica, A., Zanini, D., de Oliveira, T., de Sá, C. A., . . . Manfredi, L. H. (2021). Effects of time-restricted feeding in weight loss, metabolic syndrome and cardiovascular risk in obese women. J Transl Med, 19(1), 3. doi:10.1186/s12967-020-02687-0

Seo, M. H., Lee, W. Y., Kim, S. S., Kang, J. H., Kang, J. H., Kim, K. K., . . . Yoo, S. J. (2019). 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J Obes Metab Syndr, 28(1), 40-45. doi:10.7570/jomes.2019.28.1.40

She, Y., Sun, J., Hou, P., Fang, P., & Zhang, Z. (2021). Time-restricted feeding attenuates gluconeogenic activity through inhibition of PGC-1α expression and activity. Physiology & Behavior, 231, 113313. doi:

Sugiharto., Merawati, D., Pranoto, A., Rejeki, P.S., Lupita, M.N., Adji, B.S., Susanto, H., Taufiq, A. (2021). Acute Interval and Continuous Moderate-Intensity Exercise Enhanced Circadian Thermogenic Activity through Browning-related Genes in Obese Adolescent Female. Malaysian Journal of Fundamental and Applied Sciences, 17(5), 566-581.

Supruniuk, E., Mikłosz, A., & Chabowski, A. (2017). The Implication of PGC-1α on Fatty Acid Transport across Plasma and Mitochondrial Membranes in the Insulin Sensitive Tissues. Front Physiol, 8, 923. doi:10.3389/fphys.2017.00923

Torre-Saldaña, V. A., Gómez-Sámano, M., Gómez-Pérez, F. J., Rosas-Saucedo, J., León-Suárez, A., Grajales-Gómez, M., . . . Cuevas-Ramos, D. (2019). Fasting insulin and alanine amino transferase, but not FGF21, were independent parameters related with irisin increment after intensive aerobic exercising. Rev Invest Clin, 71(2), 133-140. doi:10.24875/ric.18002764

Tsuchiya, Y., Mizuno, S., & Goto, K. (2018). Irisin response to downhill running exercise in humans. J Exerc Nutrition Biochem, 22(2), 12-17. doi:10.20463/jenb.2018.0011

Varady, K. A., & Hellerstein, M. K. (2008). Do calorie restriction or alternate-day fasting regimens modulate adipose tissue physiology in a way that reduces chronic disease risk? Nutrition Reviews, 66(6), 333-342. doi:10.1111/j.1753-4887.2008.00041.x

Vargas-Ortiz, K., Perez-Vazquez, V., Diaz-Cisneros, F. J., Figueroa, A., Jiménez-Flores, L. M., Rodriguez-DelaRosa, G., & Macias, M. H. (2015). Aerobic Training Increases Expression Levels of SIRT3 and PGC-1α in Skeletal Muscle of Overweight Adolescents Without Change in Caloric Intake. Pediatr Exerc Sci, 27(2), 177-184. doi:10.1123/pes.2014-0112

Vidal-Puig, A. (2013). Adipose tissue expandability, lipotoxicity and the metabolic syndrome. Endocrinología y Nutrición, 60, 39-43. doi:

Vieira, R. F. L., Muñoz, V. R., Junqueira, R. L., de Oliveira, F., Gaspar, R. C., Nakandakari, S., . . . Pauli, J. R. (2022). Time-restricted feeding combined with aerobic exercise training can prevent weight gain and improve metabolic disorders in mice fed a high-fat diet. J Physiol, 600(4), 797-813. doi:10.1113/jp280820

WHO. (2016). Obesity and Overweight: World Health Organization.

WHO. (2018). Noncommunicable Diseases Country Profiles 2018, World Health Organization. doi:

Xiong, X.-Q., Chen, D., Sun, H.-J., Ding, L., Wang, J.-J., Chen, Q., . . . Zhu, G.-Q. (2015). FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1852(9), 1867-1875. doi:

Xu, B. (2013). BDNF (I)rising from exercise. Cell Metab, 18(5), 612-614. doi:10.1016/j.cmet.2013.10.008

Zhang, Y., Li, R., Meng, Y., Li, S., Donelan, W., Zhao, Y., . . . Tang, D. (2014). Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 63(2), 514-525. doi:10.2337/db13-1106.




Cómo citar

Sari, A. R., Risdayanto, R. D., Pradipta, M. H., Qorni, U. A., Rejeki, P. S., Argarini, R., Halim, S., & Pranoto, A. (2024). Impacto de la combinación de alimentación con restricción de tiempo y ejercicio aeróbico en la promoción de los niveles de mioquinas y la mejora de la composición corporal en mujeres obesas (Impact of Time-Resricted Feeding and Aerobic Exercise Combination on Promotes Myokine Levels and Improve Body Composition in Obese Women). Retos, 53, 1–10.



Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 > >>