La cinta de correr tiene un efecto más beneficioso que el ciclismo en la pérdida de grasa mediante la secreción de miocinas en mujeres obesas (Treadmill has a more beneficial effect than cycling on fat loss through myokines secretion in obese women)

Autores/as

  • Hayuris Kinandita Setiawan Physiology Division, Department of Medical Physiology and Biochemistry, Universitas Airlangga
  • Purwo Sri Rejeki Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-6285-4058
  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-4080-9245
  • Kristanti Wanito Wigati Physiology Division, Department of Medical Physiology and Biochemistry, Universitas Airlangga
  • Muhammad Muhammad Department of Sport Coaching Education, Faculty of Sport Science and Health, Universitas Negeri Surabaya
  • Ilham Rahmanto Medical Program, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-0916-5824

DOI:

https://doi.org/10.47197/retos.v55.103483

Palabras clave:

Aerobic exercise, interleukin 6, irisin, obesity, metabolism

Resumen

La obesidad es una condición caracterizada por la acumulación excesiva de grasa corporal más allá de los límites normales. La irisina y la IL-6 son mioquinas que tienen la función de convertir el tejido adiposo blanco en tejido adiposo marrón, lo que resulta en una termogénesis que induce el gasto de energía y tiene implicaciones para reducir la acumulación excesiva de grasa. Este estudio tiene como objetivo demostrar la respuesta del ejercicio en cinta rodante y bicicleta ergonómica de intensidad moderada sobre la pérdida de grasa y el aumento de la secreción de mioquinas en mujeres adolescentes obesas. Un total de 30 mujeres obesas cumplieron los criterios con un índice de masa corporal (IMC) de 30,02 ± 2,97 kg/m2 y una edad de 21,27 ± 1,31 años. Fueron reclutadas para el estudio y se les administró una única sesión de ejercicio aeróbico en bicicleta ergométrica (AEEG) y ejercicio aeróbico en cinta rodante. (ATEG) durante 45 min. Medición de miocinas, es decir, irisina e IL-6, mediante un ensayo de inmunoabsorción ligado a enzimas (ELISA) en todas las muestras. El análisis estadístico se realizó mediante una prueba ANOVA unidireccional y la prueba post hoc HSD de Tukey con significancia al nivel del 5%. Los resultados mostraron que los niveles promedio de irisina post-ejercicio fueron 72,82±42,96 ng/mL en CTLG, 282,50±75,96 ng/mL en AEEG, 488,14±61,30 ng/mL en ATEG y p = 0,000. Los niveles promedio de IL-6 post-ejercicio fueron 51,09±15,68 pg/mL en CTLG, 58,94±3,62 pg/mL en AEEG, 129,29±52,65 pg/mL en ATEG y p = 0,000. Los ∆ FAT promedio fueron -0,02 ± 0,34 % en CTLG, -0,35 ± 0,19 % en AEEG, -0,46 ± 0,18 pg/mL en ATEG y p = 0,002. Ambas intervenciones de ejercicio aumentaron consistentemente los niveles de irisina, mientras que se encontró que los niveles de IL-6 aumentaron solo con el ejercicio aeróbico en cinta rodante. Del mismo modo, la grasa corporal solo disminuyó después de una sesión de ejercicio aeróbico en cinta rodante en comparación con el ejercicio aeróbico en bicicleta ergonómica.

Palabras clave: Ejercicio aeróbico, interleucina 6, irisina, obesidad, metabolismo

Abstract. Obesity is a condition characterized by the excessive accumulation of body fat beyond normal limits. Irisin and IL-6 are myokines that have a function to convert white adipose tissue into brown adipose tissue, resulting in thermogenesis that induces energy expenditure and has implications for reducing excess fat accumulation. This study aims to demonstrate the response of moderate-intensity treadmill and ergo cycle exercise on fat loss and increasing myokines secretion in obese adolescent females. A total of 30 obese women met the criteria with body mass index (BMI) of 30.02±2.97 kg/m2, age 21.27±1.31 years were recruited into the study and given single session of aerobic ergo cycle exercise (AEEG) and aerobic treadmill exercise (ATEG) during 45 min. Measurement of myokines, i.e., irisin and IL-6, using Enzyme-Linked Immunosorbent Assay (ELISA) on all samples. Statistical analysis was performed using a one-way ANOVA test and Tukey's HSD post hoc test with significance at the 5% level. The results showed that the average levels of irisin post-exercise were 72.82±42.96 ng/mL at CTLG, 282.50±75.96 ng/mL at AEEG, 488.14±61.30 ng/mL at ATEG, and p = 0.000. Average levels of IL-6 post-exercise were 51.09±15.68 pg/mL at CTLG, 58.94±3.62 pg/mL at AEEG, 129.29±52.65 pg/mL at ATEG, and p = 0.000. Average ∆ FAT were -0.02±0.34 % at CTLG, -0.35±0.19 % at AEEG, -0.46±0.18 pg/mL at ATEG, and p = 0.002. Both intervention of exercise consistently increased irisin levels, while IL-6 levels were found to increase only with aerobic treadmill exercise. Likewise, body fat only decreased after one session of treadmill aerobic exercise compared to ergo cycle aerobic exercise.

Keywords: Aerobic exercise, interleukin 6, irisin, obesity, metabolism

Citas

Archundia-Herrera, C., Macias-Cervantes, M., Ruiz-Muñoz, B., Vargas-Ortiz, K., Kornhauser, C., & Perez-Vazquez, V. (2017). Muscle irisin response to aerobic vs HIIT in overweight female adolescents. Diabetology and metabolic syndrome, 9, 101. https://doi.org/10.1186/s13098-017-0302-5.

Arias-Loste, M. T., Ranchal, I., Romero-Gómez, M., & Crespo, J. (2014). Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. International journal of molecular sciences, 15(12), 23163–23178. https://doi.org/10.3390/ijms151223163.

Balakrishnan, R., & Thurmond, D. C. (2022). Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. International journal of molecular sciences, 23(9), 4636. https://doi.org/10.3390/ijms23094636.

Basic Health Research. 2018. Basic Health Research National Report. Jakarta: Kemenkes RI. Available at: http://www.kesmas.kemkes.go.id.

Bongartz, U., Hochmann, U., Grube, B., Uebelhack, R., Alt, F., Erlenbeck, C., Peng, L. V., Chong, P. W., & De Costa, P. (2022). Flaxseed Mucilage (IQP-LU-104) Reduces Body Weight in Overweight and Moderately Obese Individuals in a 12-week, Three-Arm, Double-Blind, Randomized, and Placebo-Controlled Clinical Study. Obesity facts, 15(3), 395–404. https://doi.org/10.1159/000522082.

Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., & Spiegelman, B. M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. https://doi.org/10.1038/nature10777.

Briken, S., Rosenkranz, S. C., Keminer, O., Patra, S., Ketels, G., Heesen, C., Hellweg, R., Pless, O., Schulz, K. H., & Gold, S. M. (2016). Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. Journal of neuroimmunology, 299, 53–58. https://doi.org/10.1016/j.jneuroim.2016.08.007.

Chireh, S., Alizadeh, R., & Moradi, L. (2018). The effect of 3 weeks ergometer cycling training with and without vascular occlusion on Plasma concentration of Irisin and PGC-1α in healthy men. Sport Physiology and Management Investigations, 9(4), 95-105.

Chooi, Y. C., Ding, C., & Magkos, F. (2019). The epidemiology of obesity. Metabolism: clinical and experimental, 92, 6–10. https://doi.org/10.1016/j.metabol.2018.09.005.

Colpitts, B. H., Rioux, B. V., Eadie, A. L., Brunt, K. R., & Sénéchal, M. (2022). Irisin response to acute moderate intensity exercise and high intensity interval training in youth of different obesity statuses: A randomized crossover trial. Physiological reports, 10(4), e15198. https://doi.org/10.14814/phy2.15198.

Costello, J. T., Rendell, R. A., Furber, M., Massey, H. C., Tipton, M. J., Young, J. S., & Corbett, J. (2018). Effects of acute or chronic heat exposure, exercise and dehydration on plasma cortisol, IL-6 and CRP levels in trained males. Cytokine, 110, 277–283. https://doi.org/10.1016/j.cyto.2018.01.018.

Cullen, T., Thomas, A. W., Webb, R., & Hughes, M. G. (2015). The relationship between interleukin-6 in saliva, venous and capillary plasma, at rest and in response to exercise. Cytokine, 71(2), 397–400. https://doi.org/10.1016/j.cyto.2014.10.011.

Deveci, G., & Şanlıer, N. (2018). Sitting time, walking, moderate and intensity exercise may effect serum il-4 and il-6 levels in colorectal cancer patients. Clinical Nutrition, 37, S83-S84. https://doi.org/1016/j.clnu.2018.06.1330.

Dianatinasab, A., Koroni, R., Bahramian, M., Bagheri-Hosseinabadi, Z., Vaismoradi, M., Fararouei, M., & Amanat, S. (2020). The effects of aerobic, resistance, and combined exercises on the plasma irisin levels, HOMA-IR, and lipid profiles in women with metabolic syndrome: A randomized controlled trial. Journal of exercise science and fitness, 18(3), 168–176. https://doi.org/10.1016/j.jesf.2020.06.004.

Durrer Schutz, D., Busetto, L., Dicker, D., Farpour-Lambert, N., Pryke, R., Toplak, H., Widmer, D., Yumuk, V., & Schutz, Y. (2019). European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obesity facts, 12(1), 40–66. https://doi.org/10.1159/000496183.

Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Archives of medical science : AMS, 13(4), 851–863. https://doi.org/10.5114/aoms.2016.58928.

Francisco, V., Pino, J., Gonzalez-Gay, M. A., Mera, A., Lago, F., Gómez, R., Mobasheri, A., & Gualillo, O. (2018). Adipokines and inflammation: is it a question of weight?. British journal of pharmacology, 175(10), 1569–1579. https://doi.org/10.1111/bph.14181.

Gadde, K. M., Martin, C. K., Berthoud, H. R., & Heymsfield, S. B. (2018). Obesity: Pathophysiology and Management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011.

Galgani, J. E., Moro, C., & Ravussin, E. (2012). Metabolic flexibility and insulin resistance. American Journal of Physiology-Endocrinology and Metabolism, 295(5), E1009-E1017. https://doi.org/10.1152/ajpendo.00240.2008.

Gan, Z., Wang, J., Wang, C., Zhu, Y., Yang, Y., Li, L., & Zhang, M. (2018). Irisin in human serum is elevated in response to acute endurance exercise. Medicine and Science in Sports and Exercise, 50(3), 526-534. https://doi.org/10.1249/MSS.0000000000001476.

Hawley, N. L., & McGarvey, S. T. (2015). Obesity and diabetes in Pacific Islanders: the current burden and the need for urgent action. Current diabetes reports, 15(5), 29. https://doi.org/10.1007/s11892-015-0594-5.

Hojman, P., Brolin, C., Nørgaard-Christensen, N., Dethlefsen, C., Lauenborg, B., Olsen, C. K., Åbom, M. M., Krag, T., Gehl, J., & Pedersen, B. K. (2019). IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. American journal of physiology. Endocrinology and metabolism, 316(5), E940–E947. https://doi.org/10.1152/ajpendo.00414.2018.

Hruby, A., & Hu, F. B. (2015). The Epidemiology of Obesity: A Big Picture. PharmacoEconomics, 33(7), 673–689. https://doi.org/10.1007/s40273-014-0243-x.

Huh J. Y. (2018). The role of exercise-induced myokines in regulating metabolism. Archives of pharmacal research, 41(1), 14–29. https://doi.org/10.1007/s12272-017-0994-y.

Huh, J. Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I. I., Filippaios, A., Panagiotou, G., Park, K. H., & Mantzoros, C. S. (2014). Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. The Journal of clinical endocrinology and metabolism, 99(11), E2154–E2161. https://doi.org/10.1210/jc.2014-1437.

Jürimäe, J., Purge, P., Remmel, L., Ereline, J., Kums, T., Kamandulis, S., Brazaitis, M., Venckunas, T., & Pääsuke, M. (2023). Changes in irisin, inflammatory cytokines and aerobic capacity in response to three weeks of supervised sprint interval training in older men. The Journal of sports medicine and physical fitness, 63(1), 162–169. https://doi.org/10.23736/S0022-4707.22.13949-6.

Kim, H. J., Lee, H. J., So, B., Son, J. S., Yoon, D., & Song, W. (2016). Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study. Physiological research, 65(2), 271–279. https://doi.org/10.33549/physiolres.932997.

Kistner, T. M., Pedersen, B. K., & Lieberman, D. E. (2022). Interleukin 6 as an energy allocator in muscle tissue. Nature metabolism, 4(2), 170–179. https://doi.org/10.1038/s42255-022-00538-4.

Kwon, J. H., Moon, K. M., & Min, K. W. (2020). Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare (Basel, Switzerland), 8(4), 378. https://doi.org/10.3390/healthcare8040378.

Lang Lehrskov, L., Lyngbaek, M. P., Soederlund, L., Legaard, G. E., Ehses, J. A., Heywood, S. E., Wewer Albrechtsen, N. J., Holst, J. J., Karstoft, K., Pedersen, B. K., & Ellingsgaard, H. (2018). Interleukin-6 Delays Gastric Emptying in Humans with Direct Effects on Glycemic Control. Cell metabolism, 27(6), 1201–1211.e3. https://doi.org/10.1016/j.cmet.2018.04.008.

Leal, L. G., Lopes, M. A., & Batista, M. L., Jr (2018). Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Frontiers in physiology, 9, 1307. https://doi.org/10.3389/fphys.2018.01307.

Lehrskov, L. L., & Christensen, R. H. (2019). The role of interleukin-6 in glucose homeostasis and lipid metabolism. Seminars in immunopathology, 41(4), 491–499. https://doi.org/10.1007/s00281-019-00747-2.

Li, J., Yi, X., Li, T., Yao, T., Li, D., Hu, G., Ma, Y., Chang, B., & Cao, S. (2022). Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocrine connections, 11(3), e210625. https://doi.org/10.1530/EC-21-0625.

Lin, W., Song, H., Shen, J., Wang, J., Yang, Y., Yang, Y., Cao, J., Xue, L., Zhao, F., Xiao, T., & Lin, R. (2023). Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Frontiers in physiology, 14, 1110926. https://doi.org/10.3389/fphys.2023.1110926.

Luna, L. A., Jr, Bachi, A. L., Novaes e Brito, R. R., Eid, R. G., Suguri, V. M., Oliveira, P. W., Gregorio, L. C., & Vaisberg, M. (2011). Immune responses induced by Pelargonium sidoides extract in serum and nasal mucosa of athletes after exhaustive exercise: modulation of secretory IgA, IL-6 and IL-15. Phytomedicine : international journal of phytotherapy and phytopharmacology, 18(4), 303–308. https://doi.org/10.1016/j.phymed.2010.08.003.

Merawati, D., Sugiharto, Susanto, H., Taufiq, A., Pranoto, A., Amelia, D., & Rejeki, P. S. (2023). Dynamic of irisin secretion change after moderate-intensity chronic physical exercise on obese female. Journal of basic and clinical physiology and pharmacology, 34(4), 539–547. https://doi.org/10.1515/jbcpp-2023-0041.

Nara, H., and Watanabe, R. 2021. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. International journal of molecular sciences, 22(18), 9889. https://doi.org/10.3390/ijms22189889.

Newlin, M. K., Williams, S., McNamara, T., Tjalsma, H., Swinkels, D. W., & Haymes, E. M. (2012). The effects of acute exercise bouts on hepcidin in women. International journal of sport nutrition and exercise metabolism, 22(2), 79–88. https://doi.org/10.1123/ijsnem.22.2.79.

Nishii, K., Aizu, N., & Yamada, K. (2023). Review of the health-promoting effects of exercise and the involvement of myokines. Fujita medical journal, 9(3), 171–178. https://doi.org/10.20407/fmj.2022-020.

Park, K. S., & Nickerson, B. S. (2022). Aerobic exercise is an independent determinant of levels of inflammation and oxidative stress in middle-aged obese females. Journal of exercise rehabilitation, 18(1), 43–49. https://doi.org/10.12965/jer.2142724.352.

Perakakis, N., Triantafyllou, G. A., Fernández-Real, J. M., Huh, J. Y., Park, K. H., Seufert, J., & Mantzoros, C. S. (2017). Physiology and role of irisin in glucose homeostasis. Nature reviews. Endocrinology, 13(6), 324–337. https://doi.org/10.1038/nrendo.2016.221.

Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J. P., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., St-Onge, M. P., & American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council (2021). Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation, 143(21), e984–e1010. https://doi.org/10.1161/CIR.0000000000000973.

Pranoto, A., Cahyono, M. B. A., Yakobus, R., Izzatunnisa, N., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Effendi, W. I., Wungu, C. D. K., and Yamaoka, Y. (2023a). Long-Term Resistance-Endurance Combined Training Reduces Pro-Inflammatory Cytokines in Young Adult Females with Obesity. Sports (Basel, Switzerland), 11(3), 54. https://doi.org/10.3390/sports11030054.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., and Yamaoka, Y. (2023b). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.

Pranoto, A., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Nindya, T. S., Lestari, B., & Halim, S. (2024). The role of long-term combination training in reducing and maintaining of body fat in obese young adult women. Retos, 53, 139–146. https://doi.org/10.47197/retos.v53.102460.

Ren, C., Zhu, J., Shen, T., Song, Y., Tao, L., Xu, S., Zhao, W., & Gao, W. (2022). Comparison Between Treadmill and Bicycle Ergometer Exercises in Terms of Safety of Cardiopulmonary Exercise Testing in Patients With Coronary Heart Disease. Frontiers in cardiovascular medicine, 9, 864637. https://doi.org/10.3389/fcvm.2022.864637.

Rejeki, P.S., Pranoto, A., Prasetya, R.E., & Sugiharto. (2021). Irisin serum increasing pattern is higher at moderate-intensity continuous exercise than at moderate-intensity interval exercise in obese females. Comparative Exercise Physiology, 17(5), 475–484. https://doi.org/10.3920/CEP200050.

Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel, Switzerland), 11(4), 90. https://doi.org/10.3390/sports11040090.

Salamat, K.M., Azarbayjani, M.A., Yusuf, A., & Dehghan, F. (2016). The response of pre-inflammatory cytokines factors to different exercises (endurance, resistance, concurrent) in overweight men. Alexandria Journal of Medicine, 52(4), 367-370. https://doi.org/10.1016/j.ajme.2015.12.007.

Sari, A. R., Risdayanto, R. D., Pradipta, M. H., Qorni, U. A., Rejeki, P. S., Argarini, R., Halim, S., & Pranoto, A. (2024). Impact of Time-Resricted Feeding and Aerobic Exercise Combination on Promotes Myokine Levels and Improve Body Composition in Obese Women. Retos, 53, 1–10. https://doi.org/10.47197/retos.v53.102429.

Severinsen, M. C. K., & Pedersen, B. K. (2020). Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocrine reviews, 41(4), 594–609. https://doi.org/10.1210/endrev/bnaa016.

Soujanya, K. V., & Jayadeep, A. P. (2022). Obesity-associated biochemical markers of inflammation and the role of grain phytochemicals. Journal of food biochemistry, 46(9), e14257. https://doi.org/10.1111/jfbc.14257.

Tsuchiya, Y., Ando, D., Takamatsu, K., & Goto, K. (2015). Resistance exercise induces a greater irisin response than endurance exercise. Metabolism: clinical and experimental, 64(9), 1042–1050. https://doi.org/10.1016/j.metabol.2015.05.010.

van der Vaart, J. I., Boon, M. R., & Houtkooper, R. H. (2021). The Role of AMPK Signaling in Brown Adipose Tissue Activation. Cells, 10(5), 1122. https://doi.org/10.3390/cells10051122.

Vekic, J., Zeljkovic, A., Stefanovic, A., Jelic-Ivanovic, Z., & Spasojevic-Kalimanovska, V. (2019). Obesity and dyslipidemia. Metabolism: clinical and experimental, 92, 71–81. https://doi.org/10.1016/j.metabol.2018.11.005.

Waseem, R., Shamsi, A., Mohammad, T., Hassan, M. I., Kazim, S. N., Chaudhary, A. A., Rudayni, H. A., Al-Zharani, M., Ahmad, F., & Islam, A. (2022). FNDC5/Irisin: Physiology and Pathophysiology. Molecules (Basel, Switzerland), 27(3), 1118. https://doi.org/10.3390/molecules27031118.

Wedell-Neergaard, A. S., Lang Lehrskov, L., Christensen, R. H., Legaard, G. E., Dorph, E., Larsen, M. K., Launbo, N., Fagerlind, S. R., Seide, S. K., Nymand, S., Ball, M., Vinum, N., Dahl, C. N., Henneberg, M., Ried-Larsen, M., Nybing, J. D., Christensen, R., Rosenmeier, J. B., Karstoft, K., Pedersen, B. K., et al. (2019). Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell metabolism, 29(4), 844–855.e3. https://doi.org/10.1016/j.cmet.2018.12.007.

Whillier S. (2020). Exercise and Insulin Resistance. Advances in experimental medicine and biology, 1228, 137–150. https://doi.org/10.1007/978-981-15-1792-1_9.

Windarti, N., Hlaing, S. W., & Kakinaka, M. (2019). Obesity Kuznets curve: international evidence. Public health, 169, 26–35. https://doi.org/10.1016/j.puhe.2019.01.004.

World Health Organization (WHO). (2012). A comprehensive global monitoring framework including indicators and a set of voluntary global targets for the prevention and control of noncommunicable diseases. Geneva: WHO Press. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

World Health Organization (WHO). (2016). Obesity and overweight. Geneva: WHO Press. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/.

Yaya, S., & Ghose, B. (2019). Trend in overweight and obesity among women of reproductive age in Uganda: 1995-2016. Obesity science and practice, 5(4), 312–323. https://doi.org/10.1002/osp4.351.

Zhu, X., Zhang, F., Chen, J., Zhao, Y., Ba, T., Lin, C., Lu, Y., Yu, T., Cai, X., Zhang, L., & Ji, L. (2022). The Effects of Supervised Exercise Training on Weight Control and Other Metabolic Outcomes in Patients With Type 2 Diabetes: A Meta-Analysis. International journal of sport nutrition and exercise metabolism, 32(3), 186–194. https://doi.org/10.1123/ijsnem.2021-0168.

Descargas

Publicado

2024-06-01

Cómo citar

Setiawan, H. K., Rejeki, P. S., Pranoto, A., Wigati, K. W., Muhammad, M., & Rahmanto, I. (2024). La cinta de correr tiene un efecto más beneficioso que el ciclismo en la pérdida de grasa mediante la secreción de miocinas en mujeres obesas (Treadmill has a more beneficial effect than cycling on fat loss through myokines secretion in obese women). Retos, 55, 203–211. https://doi.org/10.47197/retos.v55.103483

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 > >>