Análise bibliométrica da inteligência artificial no esporte
DOI:
https://doi.org/10.47197/retos.v54.103531Palavras-chave:
Inteligencia artificial, entrenamiento deportivo, deporte moderno, análisis bibliométrico, metodología ARAResumo
A análise bibliométrica da inteligência artificial (IA) no desporto revela uma tendência crescente na investigação e aplicação desta tecnologia neste fenómeno social. Na última década, houve um aumento significativo no número de publicações científicas relacionadas à inteligência artificial e ao esporte, indicando grande interesse pelo tema. O objetivo desta pesquisa foi analisar bibliometricamente os elementos da inteligência artificial no esporte. A metodologia utilizada foi a hermenêutica e a análise de três componentes fundamentais Autores, Periódicos e Contribuições (ARA) propostos pelos autores para a revisão bibliométrica. Foram analisados 1.002 artigos científicos pertencentes às bases de dados Scopus (825), Science Direct (172) e Mendeley (5). Dois critérios foram tomados como critérios de inclusão na pesquisa: todos deveriam ser artigos científicos, em espanhol e inglês. Os principais resultados baseiam-se na identificação dos principais autores, revistas e contribuições que valorizam a IA no desporto, tendo em conta as novas metodologias e tendências acima referidas. Concluindo, a IA no desporto é definida como uma ferramenta que corrige erros, auxilia na tomada de decisões, potencia novas estratégias desportivas de treino e competição, ajuda a prevenir lesões desportivas, a estudar adversários e a melhorar cenários desportivos de alta qualidade.
Palavras-chave: Inteligência artificial, treinamento esportivo, esporte moderno, análise bibliométrica, metodologia ARA.
Referências
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics,11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007.
Bellod, H. C., Buendía Ramón, V., Carballeira Fernández, E., & Guzmán Luján, J. F. (2021). Análisis del estrés y el compromiso académico-deportivo mediante Redes Neuronales Artificiales Auto-organizativas. Retos, 42, 136–144. https://doi.org/10.47197/retos.v42i0.86983.
Bozděch, M., & Vychodilová, R. (2023). Evaluation of neural network feature and function settings on the model performance and accuracy. Journal of Physical Education and Sport, 23(4), pp. 983–989, 123. https://doi.org/10.7752/jpes.2023.04123.
Cheng, K., Guo, Q., He, Y., Li, C., & Wu, H. (2023). Artificial Intelligence in Sports Medicine: Could GPT-4 Make Human Doctors Obsolete? Annals of Biomedical Engineering, 51(8), pp. 1658–1662. https://doi.org/10.1007/s10439-023-03213-1.
Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches. Sage publications. https://doi.org/doi.org/10.1177/1558689812464242.
Dandrieux, P.-E., Navarro, L., Blanco, D., Hollander, K., & Edouard, P. (2023). Relationship between a daily injury risk estimation feedback (I-REF) based on machine learning techniques and actual injury risk in athletics (track and field): Protocol for a prospective cohort study over an athletics season. BMJ Open, 13(5), e069423. https://doi.org/10.1136/bmjopen-2022-069423.
Dorschky, E., Camomilla, V., Davis, J., Reenalda, J., & Koelewijn, A.D. (2023). Perspective on “in the wild” move-ment analysis using machine learning. Human Movement Science, 87, 103042. https://doi.org/10.1016/j.humov.2022.103042.
Huang, Y., & Bai, Y. (2023). Intelligent Sports Prediction Analysis System Based on Edge Computing of Particle Swarm Optimization Algorithm. IEEE Consumer Electronics Magazine, 12(2), pp. 73–82. https://doi.org/10.1109/MCE.2021.3139837.
Keiper, M.C. (2023). ChatGPT in practice: Increasing event planning efficiency through artificial intelligence. Journal of Hospitality, Leisure, Sport and Tourism Education, 33, 100454. https://doi.org/10.1016/j.jhlste.2023.100454.
Li, M., Gao, Y., & Zhao, J. (2023). Analysis of the current situation and development countermeasures of college sports training and management based on the background of artificial intelligence. Applied Mathematics and Non-linear Sciences. https://doi.org/10.2478/amns.2023.1.00161.
Li, W. (2023). Application of IoT-enabled computing technology for designing sports technical action characteristic model. Soft Computing, 27(17), pp. 12807–12824. https://doi.org/10.1007/s00500-023-08966-4.
Liu, A., Mahapatra, R.P., & Mayuri, A.V.R. (2023). Hybrid design for sports data visualization using AI and big data analytics. Complex and Intelligent Systems, 9(3), pp. 2969–2980. https://doi.org/10.1007/s40747-021-00557-w.
Liu, C., Hao, W., & Huo, B. (2023). Advances and challenges in sports biomechanics. Advances in Mechanics, 53(1), pp. 198–238. https://doi.org/10.6052/1000-0992-22-030.
Liu, Y., & Liu, L. (2023). Analysis of auxiliary modes for sports intelligence training system based on nonlinear model optimization and improved algorithms. Soft Computing. https://doi.org/10.1007/s00500-023-08546-6.
Matthew, J., Pagea, J.E., Mckenziea, P.M., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., ... & Moher, D. (2021). Declaración PRISMA 2020: Una guía ac-tualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/doi.org/10.1016/j.recesp.2021.06.016.
Mei, Z. (2023). 3D Image Analysis of Sports Technical Features and Sports Training Methods Based on Artificial Intel-ligence. Journal of Testing and Evaluation, 51(1). https://doi.org/10.1520/JTE20210469.
Oronowicz, J., Ley, C., Pachowsky, M., Seil, R., & Tischer, T. (2023). Possibilities and perspectives for the use of artificial intelligence in orthopaedic sports medicine. Sports Orthopaedics and Traumatology, 39(1), pp. 4–10. https://doi.org/10.1016/j.orthtr.2022.12.002.
Rajsp, A., & Fister, I. (2023). Neo4j graph dataset of cycling paths in Slovenia. Data in Brief, 48, 109251. https://doi.org/10.1016/j.dib.2023.109251.
Sanabria-Navarro, J. R., Silveira Pérez, Y., & Cortina–Núñez, M. de J. (2023). Análisis bibliométrico del deporte 4.0: una realidad para el desarrollo de la cultura deportiva contemporánea. Retos, 48, 1086–1097. https://doi.org/10.47197/retos.v48.96948.
Sanabria-Navarro, J., Silveira-Pérez, Y., Pérez-Bravo, D., & de-Jesús-Cortina-Núñez, M. (2023). Incidences of artifi-cial intelligence in contemporary education. Comunicar, 77, 97-107. https://doi.org/10.3916/C77-2023-08.
Wang, X. (2023). Research on the evaluation of sports training effect based on artificial intelligence technology. Pro-ceedings of SPIE - The International Society for Optical Engineering, 12635, 1263513. https://doi.org/10.1117/12.2679212.
Wei, S., Wang, K., & Li, X. (2022). Design and implementation of college sports training system based on artificial intelligence. International Journal of System Assurance Engineering and Management, 13, pp. 971–977. https://doi.org/10.1007/s13198-021-01149-0.
Xie, M. (2023). Intelligent Analysis Method of Sports Training Posture Based on Artificial Intelligence. Lecture Notes in Electrical Engineering, 1031 LNEE, pp. 409–415. https://doi.org/10.1007/978-981-99-1428-9_50.
Xu, Z., & Zhang, S. (2023). Editorial: Special issue on artificial intelligence technologies in sports and art data applica-tions. Neural Computing and Applications, 35(6), pp. 4199–4200. https://doi.org/10.1007/s00521-022-08124-1.
Yang, C., & Chang, Y.-T. (2023). Data Collection And Performance Evaluation Of Running Training Sport Using Different Neural Network Techniques. Journal of Mechanics in Medicine and Biology, 23(4), 2340053. https://doi.org/10.1142/S0219519423400535.
Zhang, Y., Duan, W., Villanueva, L.E., & Chen, S. (2023). Transforming sports training through the integration of internet technology and artificial intelligence. Soft Computing. https://doi.org/10.1007/s00500-023-08960-w.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Retos
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e assegurar a revista o direito de ser a primeira publicação da obra como licenciado sob a Licença Creative Commons Attribution que permite que outros para compartilhar o trabalho com o crédito de autoria do trabalho e publicação inicial nesta revista.
- Os autores podem estabelecer acordos adicionais separados para a distribuição não-exclusiva da versão do trabalho publicado na revista (por exemplo, a um repositório institucional, ou publicá-lo em um livro), com reconhecimento de autoria e publicação inicial nesta revista.
- É permitido e os autores são incentivados a divulgar o seu trabalho por via electrónica (por exemplo, em repositórios institucionais ou no seu próprio site), antes e durante o processo de envio, pois pode gerar alterações produtivas, bem como a uma intimação mais Cedo e mais do trabalho publicado (Veja O Efeito do Acesso Livre) (em Inglês).
Esta revista é a "política de acesso aberto" de Boai (1), apoiando os direitos dos usuários de "ler, baixar, copiar, distribuir, imprimir, pesquisar, ou link para os textos completos dos artigos". (1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess