El efecto de diferentes tipos de intensidad de natación sobre el aumento de los niveles séricos de fosfatasa alcalina específica del hueso de ratones machos obesos (Mus Musculus) (The effect of different types of swimming intensity on increasing serum bone specific-alkaline phosphatase levels of obese male mice (Mus Musculus))

Autores/as

  • Priska Okta Avia Martha Sport Health Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-2411-9877
  • Gadis Meinar Sari Physiology Division, Department of Medical Physiology and Biochemistry, Universitas Airlangga https://orcid.org/0000-0002-9178-8926
  • Purwo Sri Rejeki Physiology Division, Department of Medical Physiology and Biochemistry, Universitas Airlangga
  • Silvia Maya Ananta Faculty of Medicine, Universitas Airlangga

DOI:

https://doi.org/10.47197/retos.v58.105027

Palabras clave:

Aerobic Training, BALP, Obesity, Swimming, Training intensity

Resumen

La obesidad puede interferir con el proceso de remodelación ósea, el entrenamiento es una solución para proteger la densidad ósea. Sin embargo, el entrenamiento y su intensidad sobre la remodelación ósea a través del biomarcador Fosfatasa Alcalina Específica del Hueso (BALP) con obesidad aún no está ampliamente estudiado por lo que aún no está clara su efectividad. En el estudio experimental participaron 24 ratones (Mus musculus) que fueron inducidos con 30% de fructosa una vez al día durante 60 días. Los ratones se agruparon en 4 grupos según la intensidad del entrenamiento, a saber, grupo de control sin entrenamiento (K1), baja intensidad con una carga del 3% del peso corporal (K2), intensidad moderada con una carga del 5% del peso corporal (K3). , mientras que la alta intensidad se realizó con una carga del 7% del peso corporal durante el 70% (K4) de la duración máxima. Se realizaron todas las sesiones de entrenamiento con una frecuencia de 3 veces por semana y luego se realizó un examen de comparación posterior a la prueba de los niveles de BALP. El promedio de niveles de BALP (ng/mL) en cada grupo post-test, el grupo control tuvo un resultado de 15,77±3,10, para la realización de entrenamiento de baja intensidad con un valor de 13,92±2,23, mientras que para el de intensidad moderada grupo de entrenamiento de 13.11±1.67, pues el mayor incremento fue en el entrenamiento de alta intensidad con un valor de 21.10±3.70. Según la prueba de diferencias honestamente significativas (HSD) de Tukey, el grupo de entrenamiento post hoc de alta intensidad fue significativamente diferente de otros grupos (p ≤ 0,05). Todos los tipos de entrenamiento de intensidad analizados en este estudio aumentaron los niveles de BALP, especialmente en el grupo de entrenamiento de alta intensidad que tuvo un aumento muy significativo en los niveles de BALP. Por tanto, el entrenamiento y su intensidad inciden en aumentar el metabolismo óseo.

Palabras clave: Entrenamiento aeróbico, BALP, Obesidad, Natación, Intensidad del entrenamiento.

Abstract. Obesity can interfere with the bone remodeling process, training is one solution to protect bone density. However, training and its intensity on bone remodeling through the biomarker Bone Specific-Alkaline Phosphatase (BALP) with obesity is still not widely studied so it is still unclear its effectiveness. The experimental study involved 24 mice (Mus musculus) that were induced with 30% fructose once a day for 60 days. Mice were grouped into 4 groups according to the intensity of training, namely the control group without training (K1), low intensity with a load of 3% body weight (K2), moderate intensity with a load of 5% body weight (K3), while high intensity was carried out with a load of 7% body weight for 70% (K4) of the maximum duration. All training sessions with a frequency of 3 times/week, and then a post-test comparison examination of BALP levels was carried out. The average number of BALP levels (ng/mL) in each group post-test, the control group had a result of 15.77±3.10, for the provision of low-intensity training with a value of 13.92±2.23, while for the moderate intensity training group of 13.11±1.67, for the highest increase was in high-intensity training with a value of 21.10±3.70. Based on the Tukey honestly significant difference (HSD) test, the post hoc high-intensity training group was significantly different from other groups (p ≤ 0.05). All types of training intensity analyzed in this study increased BALP levels, especially in the high-intensity training group which had a very significant increase in BALP levels. Therefore, training and its intensity affect bone metabolism increase.

Keywords: Aerobic Training, BALP, Obesity, Swimming, Training intensity.

Citas

Ali, A. T., Paiker, J. E., & Crowther, N. J. (2006). The relationship between anthropometry and serum concentrations of alkaline phosphatase isoenzymes, liver-enzymes, albumin, and bilirubin. American Journal of Clinical Pathology, 126(3), 437–442. https://doi.org/10.1309/9N346GXX67B6PX5W.

Aly, W., Desouki, R., Abdel-Mottaleb, A., & Sweed, H. (2017). Impact of strenuous exercise on bone metabolism parameters among elderly. Geriatric Medicine and Care, 1. https://doi.org/10.15761/GMC.1000104.

Antoni, M.F., Rejeki, P.S., Sulistiawati., Pranoto, A., & Sugiharto. (2022). Moderate-Intensity Swimming Exercises Decrease Body Weight and Lee’s Obesity Index in Female Mice (Mus musculus). International Journal of Research Publications, 93(1), 228–237. https://doi.org/10.47119/ijrp100931120222779.

Bakhtiyari, M., Fathi, M., & Hejazi, K. (2021). Effect of Eight Weeks of Aerobic Interval Training on the Serum Concentrations of Alkaline Phosphatase, Osteocalcin and Parathyroid Hormone in Middle-aged Men. Gene, Cell and Tissue, 8(3).

Balitbangkes RI. (2007). Basic Health Research 2007. National Report 2007, 1–384.

Balitbangkes RI. (2018). 2018 National Riskesdas Report.pdf. In Balitbangkes Publishing Institute (pp. 1–629). Health Research and Development Publishing Institute (PLB).

Benedetti, M. G., Furlini, G., Zati, A., & Letizia Mauro, G. (2018). The Effectiveness of Physical Exercise on Bone Density in Osteoporotic Patients. BioMed research international, 2018, 4840531. https://doi.org/10.1155/2018/4840531.

Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., & Spiegelman, B. M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. https://doi.org/10.1038/nature10777.

Córdova, L. A., Trichet, V., Escriou, V., Rosset, P., Amiaud, J., Battaglia, S., Charrier, C., Berreur, M., Brion, R., & Gouin, F. (2015). Inhibition of osteolysis and increase of bone formation after local administration of siRNA-targeting RANK in a polyethylene particle-induced osteolysis model. Acta Biomaterialia, 13, 150–158.

De Lorenzo, A., Van Bavel, D., de Moraes, R., & Tibiriça, E. V. (2018). High-intensity interval training or continuous training, combined or not with fasting, in obese or overweight women with cardiometabolic risk factors: study protocol for a randomised clinical trial. BMJ open, 8(4), e019304. https://doi.org/10.1136/bmjopen-2017-019304.

de Matos, M. A., Garcia, B. C. C., Vieira, D. V., de Oliveira, M. F. A., Costa, K. B., Aguiar, P. F., Magalhães, F. C., Brito-Melo, G. A., Amorim, F. T., & Rocha-Vieira, E. (2019). High-intensity interval training reduces monocyte activation in obese adults. Brain, behavior, and immunity, 80, 818–824. https://doi.org/10.1016/j.bbi.2019.05.030.

de Matos, M. A., Vieira, D. V., Pinhal, K. C., Lopes, J. F., Dias-Peixoto, M. F., Pauli, J. R., de Castro Magalhães, F., Little, J. P., Rocha-Vieira, E., & Amorim, F. T. (2018). High-Intensity Interval Training Improves Markers of Oxidative Metabolism in Skeletal Muscle of Individuals With Obesity and Insulin Resistance. Frontiers in physiology, 9, 1451. https://doi.org/10.3389/fphys.2018.01451.

Dunn, S. L. (2009). Effects of exercise and dietary intervention on metabolic syndrome markers of inactive premenopausal women. UNSW Sydney.

Fragala, M. S., Bi, C., Chaump, M., Kaufman, H. W., & Kroll, M. H. (2017). Associations of aerobic and strength exercise with clinical laboratory test values. PLoS ONE, 12(10). https://doi.org/10.1371/journal.pone.0180840.

Gerosa-Neto, J., Antunes, B. M., Campos, E. Z., Rodrigues, J., Ferrari, G. D., Rosa Neto, J. C., Bueno, C. R., Junior, & Lira, F. S. (2016). Impact of long-term high-intensity interval and moderate-intensity continuous training on subclinical inflammation in overweight/obese adults. Journal of exercise rehabilitation, 12(6), 575–580. https://doi.org/10.12965/jer.1632770.385.

Gombos, G. C., Bajsz, V., Pék, E., Schmidt, B., Sió, E., Molics, B., & Betlehem, J. (2016). Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC musculoskeletal disorders, 17, 254. https://doi.org/10.1186/s12891-016-1109-5.

Gómez-Cabello, A., Ara, I., González-Agüero, A., Casajús, J. A., & Vicente-Rodríguez, G. (2012). Effects of training on bone mass in older adults: a systematic review. Sports medicine (Auckland, N.Z.), 42(4), 301–325. https://doi.org/10.2165/11597670-000000000-00000.

Hashim, I.A. (2024). Chapter 5 - Bone metabolism and associated disorders. Tutorials in Clinical Chemistry, 129-154. https://doi.org/10.1016/B978-0-12-822949-1.00019-X.

Houdebine, L., D'Amico, D., Bastin, J., Chali, F., Desseille, C., Rumeau, V., Soukkari, J., Oudot, C., Rouquet, T., Bariohay, B., Roux, J., Sapaly, D., Weill, L., Lopes, P., Djouadi, F., Bezier, C., Charbonnier, F., & Biondi, O. (2019). Low-Intensity Running and High-Intensity Swimming Exercises Differentially Improve Energy Metabolism in Mice With Mild Spinal Muscular Atrophy. Frontiers in physiology, 10, 1258. https://doi.org/10.3389/fphys.2019.01258.

Hunter, G. R., Plaisance, E. P., Carter, S. J., & Fisher, G. (2018). Why intensity is not a bad word: Optimizing health status at any age. Clinical nutrition (Edinburgh, Scotland), 37(1), 56–60. https://doi.org/10.1016/j.clnu.2017.02.004.

Izquierdo, A. G., Crujeiras, A. B., Casanueva, F. F., & Carreira, M. C. (2019). Leptin, Obesity, and Leptin Resistance: Where Are We 25 Years Later?. Nutrients, 11(11), 2704. https://doi.org/10.3390/nu11112704.

Karstoft, K., Wallis, G. A., Pedersen, B. K., & Solomon, T. P. (2016). The effects of interval- vs. continuous exercise on excess post-exercise oxygen consumption and substrate oxidation rates in subjects with type 2 diabetes. Metabolism: clinical and experimental, 65(9), 1316–1325. https://doi.org/10.1016/j.metabol.2016.05.017.

Lee, H. S., Kim, J. H., Oh, H. J., & Kim, J. H. (2021). Effects of Interval Exercise Training on Serum Biochemistry and Bone Mineral Density in Dogs. Animals : an open access journal from MDPI, 11(9), 2528. https://doi.org/10.3390/ani11092528.

López-Gómez, J. J., Pérez Castrillón, J. L., & de Luis Román, D. A. (2016). Influencia de la obesidad sobre el metabolismo óseo. Endocrinologia y Nutricion, 63(10), 551–559. https://doi.org/10.1016/j.endonu.2016.08.005.

Ma, C., Tonks, K. T., Center, J. R., Samocha-Bonet, D., & Greenfield, J. R. (2018). Complex interplay among adiposity, insulin resistance and bone health. Clinical Obesity, 8(2), 131–139. https://doi.org/10.1111/cob.12240.

Maïmoun, L., Manetta, J., Couret, I., Dupuy, A. M., Mariano-Goulart, D., Micallef, J. P., Peruchon, E., & Rossi, M. (2006). The intensity level of physical exercise and the bone metabolism response. International Journal of Sports Medicine, 27(2), 105–111. https://doi.org/10.1055/s-2005-837621.

Marahleh, A., Kitaura, H., Ohori, F., Kishikawa, A., Ogawa, S., Shen, W.-R., Qi, J., Noguchi, T., Nara, Y., & Mizoguchi, I. (2019). TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Frontiers in Immunology, 10, 2925.

Ning, B., Mustafy, T., Londono, I., Laporte, C., & Villemure, I. (2023). Impact loading intensifies cortical bone (re)modeling and alters longitudinal bone growth of pubertal rats. Biomechanics and modeling in mechanobiology, 22(4), 1145–1162. https://doi.org/10.1007/s10237-023-01706-5.

Osiński, W., & Kantanista, A. (2017). Physical activity in the therapy of overweight and obesity in children and adolescents. Needs and recommendations for intervention programs. Developmental period medicine, 21(3), 224–234. https://doi.org/10.34763/devperiodmed.20172103.224234.

Qi, M. C., Hu, J., Zou, S. J., Chen, H. Q., Zhou, H. X., & Han, L. C. (2008). Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. International journal of oral and maxillofacial surgery, 37(5), 453–458. https://doi.org/10.1016/j.ijom.2007.12.008.

Qi, M. C., Zou, S. J., Han, L. C., Zhou, H. X., & Hu, J. (2009). Expression of bone-related genes in bone marrow MSCs after cyclic mechanical strain: implications for distraction osteogenesis. International journal of oral science, 1(3), 143–150. https://doi.org/10.4248/IJOS.09021.

Ratna, A. P., Hapsari, A., & Andiana, O. (2021). The Effect of Moderate Intensity Physical Exercise on Fasting Blood Sugar Levels of Wistar Rats (Rattus novergicus) that were given high levels of advanced glycation end product. Proceedings of the National Seminar on Sports Science, 74–84.

Riskesdas. (2013). Ministry of Health's Pusdatin: Family Planning Situation and Analysis. In Datin Info (pp. 1–6).

Roghani, T., Torkaman, G., Movasseghe, S., Hedayati, M., Goosheh, B., & Bayat, N. (2013). Effects of short-term aerobic exercise with and without external loading on bone metabolism and balance in postmenopausal women with osteoporosis. Rheumatology international, 33(2), 291–298. https://doi.org/10.1007/s00296-012-2388-2.

Roy, B., Curtis, M. E., Fears, L. S., Nahashon, S. N., & Fentress, H. M. (2016). Molecular mechanisms of obesity-induced osteoporosis and muscle atrophy. Frontiers in Physiology, 7(SEP). https://doi.org/10.3389/fphys.2016.00439.

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice. Retos, 51, 1194–1209. https://doi.org/10.47197/retos.v51.101189.

Savvidis, C., Tournis, S., & Dede, A. D. (2018). Obesity and bone metabolism. Hormones (Athens, Greece), 17(2), 205–217. https://doi.org/10.1007/s42000-018-0018-4.

Schaller, K., & Mons, U. (2018). Tax on sugar sweetened beverages and influence of the industry to prevent regulation. Ernahrungs Umschau, 65(2), M82-9.

Shahram, S., Masoomeh, K., Reza, I., & Gholamreza, F. (2011). Adiponectin responses to vontinues and intermitten training in non athlete obese women. European Journal of Experimental Biology, 1(4), 216–220.

Sharma, U., Pal, D., & Prasad, R. (2014). Alkaline phosphatase: an overview. Indian journal of clinical biochemistry : IJCB, 29(3), 269–278. https://doi.org/10.1007/s12291-013-0408-y.

Soh, S. H., Joo, M. C., Yun, N. R., & Kim, M. S. (2020). Randomized Controlled Trial of the Lateral Push-Off Skater Exercise for High-Intensity Interval Training vs Conventional Treadmill Training. Archives of physical medicine and rehabilitation, 101(2), 187–195. https://doi.org/10.1016/j.apmr.2019.08.480.

Stanik, J., Kratzsch, J., Landgraf, K., Vogel, M., Thiery, J., Kiess, W., & Körner, A. (2019). The bone markers sclerostin, osteoprotegerin, and bone-specific alkaline phosphatase are related to insulin resistance in children and adolescents, independent of their association with growth and obesity. Hormone Research in Paediatrics, 91(1), 1–8. https://doi.org/10.1159/000497113.

Statistics, B. P. (2022). Prevalence of Obesity in Population Aged > 18 Years According to Gender 2013-2018. Central Bureau of Statistics. Accessed from Https://Www. Mr. Go. Id/Indicator/30/1781/1/Prevalence-of-Obesity-In-18-Year-Old-Population-According-to-Gender. HTML.

Sun, W., Zhang, X. A., & Wang, Z. (2023). The role and regulation mechanism of Chinese traditional fitness exercises on the bone and cartilage tissue in patients with osteoporosis: A narrative review. Frontiers in physiology, 14, 1071005. https://doi.org/10.3389/fphys.2023.1071005.

Teixeira-Lemos, E., Nunes, S., Teixeira, F., & Reis, F. (2011). Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovascular diabetology, 10, 12. https://doi.org/10.1186/1475-2840-10-12.

Troy, K. L., Mancuso, M. E., Butler, T. A., & Johnson, J. E. (2018). Exercise early and often: Effects of physical activity and exercise on women’s bone health. International Journal of Environmental Research and Public Health, 15(5). https://doi.org/10.3390/ijerph15050878.

Upadhyay, J., Farr, O. M., & Mantzoros, C. S. (2015). The role of leptin in regulating bone metabolism. Metabolism: Clinical and Experimental, 64(1), 105–113. https://doi.org/10.1016/j.metabol.2014.10.021.

Uranga, R. M., & Keller, J. N. (2019). The Complex Interactions Between Obesity, Metabolism and the Brain. Frontiers in Neuroscience, 13, 513. https://doi.org/10.3389/fnins.2019.00513.

Wallace, J. D., Cuneo, R. C., Lundberg, P. A., Rosén, T., Jørgensen, J. O., Longobardi, S., Keay, N., Sacca, L., Christiansen, J. S., Bengtsson, B. A., & Sönksen, P. H. (2000). Responses of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males. The Journal of clinical endocrinology and metabolism, 85(1), 124–133. https://doi.org/10.1210/jcem.85.1.6262.

Welsh, C., & Prentice-Craver, C. (2024). Hole’s Human Anatomy and Physiology. New York: McGraw-Hill Education.

Wewege, M., van den Berg, R., Ward, R. E., & Keech, A. (2017). The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obesity reviews : an official journal of the International Association for the Study of Obesity, 18(6), 635–646. https://doi.org/10.1111/obr.12532.

Y Yu, W., Zhong, L., Yao, L., Wei, Y., Gui, T., Li, Z., Kim, H., Holdreith, N., Jiang, X., Tong, W., Dyment, N., Liu, X. S., Yang, S., Choi, Y., Ahn, J., & Qin, L. (2021). Bone marrow adipogenic lineage precursors promote osteoclastogenesis in bone remodeling and pathologic bone loss. The Journal of clinical investigation, 131(2), e140214. https://doi.org/10.1172/JCI140214.

Descargas

Publicado

2024-09-01

Cómo citar

Martha, P. O. A., Sari, G. M., Rejeki, P. S., & Ananta, S. M. (2024). El efecto de diferentes tipos de intensidad de natación sobre el aumento de los niveles séricos de fosfatasa alcalina específica del hueso de ratones machos obesos (Mus Musculus) (The effect of different types of swimming intensity on increasing serum bone specific-alkaline phosphatase levels of obese male mice (Mus Musculus)). Retos, 58, 720–726. https://doi.org/10.47197/retos.v58.105027

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 > >>