El efecto de la intensidad del ejercicio sobre la expresión de GLUT-2 pancreático y hepático en ratones alimentados con alto contenido de fructose (The Effect of Exercise Intensity on Pancreatic and Liver GLUT-2 Expression in High Fructose-Fed Mice)

Autores/as

  • Tantia Dewi Harianto Sport Health Science, Faculty of Medicine, Universitas Airlangga
  • Bagas Trio Pamungkas Medical Program, Faculty of Medicine, Universitas Airlangga
  • Purwo Sri Rejeki Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-6285-4058
  • Citrawati Dyah Kencono Wungu Biochemistry Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga
  • Joni Susanto Department of Anatomy, Histology & Pharmacology, Faculty of Medicine, Universitas Airlangga
  • Nabilah Izzatunnisa Medical Program, Faculty of Medicine, Universitas Airlangga
  • Tri Hartini Yuliawati Department of Anatomy, Histology & Pharmacology, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-3669-0918
  • Shariff Halim Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang https://orcid.org/0000-0003-3792-9879
  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-4080-9245

DOI:

https://doi.org/10.47197/retos.v57.104464

Palabras clave:

Obesity, Insulin resistance, GLUT-2 expression, Exercise, High fructose

Resumen

El exceso de jarabe de maíz con alto contenido de fructosa (JMAF) conduce a trastornos metabólicos caracterizados por una disminución de la expresión de GLUT-2 pancreático y una mayor expresión de GLUT-2 hepático. Se informa que el ejercicio es una terapia no farmacológica para mejorar los trastornos metabólicos. Este estudio tiene como objetivo comparar las diferencias en la intensidad del ejercicio con los cambios en la expresión de GLUT-2 pancreático y hepático en ratones inducidos por un alto contenido de fructosa. Un total de 36 ratones macho (Mus musculus), con un peso de 20-30 gramos, de 8 semanas de edad, se dividieron aleatoriamente en 4 grupos: C (Control; n = 9), G1 (ejercicios de natación de intensidad ligera; n = 9) , G2 (ejercicios de natación de intensidad moderada; n = 9) y G3 (ejercicios de natación de intensidad intensa; n = 9). Todos los grupos recibieron una solución de fructosa al 30% por vía oral (oral ad libitum) durante 8 semanas. Mientras tanto, se realizó ejercicio de natación 3 veces por semana durante 8 semanas con tres intensidades diferentes. La expresión de GLUT-2 pancreático y hepático se midió mediante inmunohistoquímica (IHC) y los resultados de las mediciones de expresión de GLUT-2 pancreático y hepático se evaluaron mediante la puntuación inmunorreactiva (IRS). El análisis del peso corporal mediante ANOVA unidireccional seguido de la prueba post hoc de diferencia significativa honesta (HSD) de Tukey indica que G2 reduce significativamente el peso en comparación con C, G1 y G3 (p ≤ 0,05). El análisis estadístico se realizó mediante la prueba no paramétrica de Kruskal-Wallis y seguido con la prueba U de Mann-Whitney con un nivel de significancia del 5%. Los datos mostraron que G2 aumentó significativamente la expresión de GLUT-2 pancreático y disminuyó la expresión de GLUT-2 hepático en comparación con C, G1 y G3 (p ≤ 0,05). En conclusión, el ejercicio de intensidad moderada tiene el efecto más óptimo para aumentar la expresión del GLUT-2 pancreático y disminuir la expresión del GLUT-2 hepático.

Palabras clave: Obesidad, Resistencia a la insulina, Expresión de GLUT-2, Ejercicio, Alto contenido de fructosa

Abstract. Excessive high fructose corn syrup (HFCS) leads to metabolic disorders characterized by decreased expression of pancreatic GLUT-2 and increased expression of liver GLUT-2. Exercise is reported to be a non-pharmacological therapy to improve metabolic disorders. This study aims to compare differences in exercise intensity to changes in pancreatic and liver GLUT-2 expression in mice induced by high fructose. A total of 36 male mice (Mus musculus), weighing 20-30 grams, 8-week-old, were randomly divided into 4 groups: C (Control; n = 9), G1 (light intensity swimming exercises; n = 9), G2 (moderate intensity swimming exercises; n = 9), and G3 (heavy intensity swimming exercises; n = 9). All groups were given 30% fructose solution orally (oral ad libitum) for 8 weeks. Meanwhile, swimming exercise was given out 3×/week for 8 weeks with three different intensities. Pancreatic and liver GLUT-2 expression was measured using immunohistochemistry (IHC) and the results of pancreatic and liver GLUT-2 expression measurements were evaluated using the Immunoreactive Score (IRS). The analysis of body weight using one-way ANOVA followed by Tukey's Honest Significant Difference (HSD) post hoc test indicates that G2 significantly reduces weight compared to C, G1, and G3 (p ≤ 0.05). Statistical analysis was done using the Kruskal-Wallis non-parametric test and followed up with the Mann-Whitney U Test with a significant level of 5%. The data showed that G2 significantly increased expression of pancreatic GLUT-2 and decreased expression of liver GLUT-2 compared to C, G1, and G3 (p ≤ 0.05). In conclusion, moderate-intensity exercise has the most optimal effect in increasing the expression of pancreatic GLUT-2 and decreasing the expression of liver GLUT-2.

Keywords: Obesity, Insulin resistance, GLUT-2 expression, Exercise, High fructose

Citas

Amirazodi, M., Daryanoosh, F., Mehrabi, A., Gaeini, A., Koushkie Jahromi, M., Salesi, M., & Zarifkar, A. H. (2022). Interactive Effects of Swimming High-Intensity Interval Training and Resveratrol Supplementation Improve Mito-chondrial Protein Levels in the Hippocampus of Aged Rats. BioMed research international, 2022, 8638714. https://doi.org/10.1155/2022/8638714

Antoni, M. F., Rejeki, P. S., Sulistiawati, Pranoto, A., Wigati, K. W., Sari, G. M., & Yamaoka, Y. (2022). Effect of Nocturnal and Diurnal Moderate-intensity Swimming Exercise on Increasing Irisin Level of Female Mice (Mus mus-culus). J Chiang Mai University Journal of Natural Sciences, 21(2), e2022033. https://doi.org/10.47119/IJRP100931120222779

Aryana, I. G. P. S., Hapsari, A. A. A. R., & Kuswardhani, R. A. T. (2018). Myokine Regulation as Marker of Sarcopenia in Elderly. Molecular and Cellular Biomedical Sciences. https://doi.org/38.10.21705/MCBS.V2I2.32.

Barbieri, E., & Sestili, P. (2012). Reactive oxygen species in skeletal muscle signaling. Journal of signal transduction, 2012, 982794. https://doi.org/10.1155/2012/982794

Behrestaq, S.F., Shakeri, N., Ghazalian, F., & Nikbakht, H. (2018). The Effect of 12 Weeks Aerobic Training on the Mafa Gene Expression of Pancreas in the Male Wistar Rats Type 2 Diabetes. Iranian Journal of Diabetes and Obesity, 10, 73-79.

Beigrezaei, S., Yazdanpanah, Z., Soltani, S., Rajaie, S. H., Mohseni-Takalloo, S., Zohrabi, T., Kaviani, M., Forbes, S. C., Baker, J. S., & Salehi-Abargouei, A. (2021). The effects of exercise and low-calorie diets compared with low-calorie diets alone on health: a protocol for systematic reviews and meta-analyses of controlled clinical trials. Systematic Re-views, 10(1). https://doi.org/10.1186/s13643-021-01669-7.

Berger, C., & Zdzieblo, D. (2020). Glucose transporters in pancreatic islets. Pflugers Archiv : European journal of physiology, 472(9), 1249–1272. https://doi.org/10.1007/s00424-020-02383-4

Bocarsly, M. E., Powell, E. S., Avena, N. M., & Hoebel, B. G. (2010). High-fructose corn syrup causes characteristics of obesity in rats: increased body weight, body fat and triglyceride levels. Pharmacology, biochemistry, and behavior, 97(1), 101–106. https://doi.org/10.1016/j.pbb.2010.02.012

Brandt, N., Dethlefsen, M. M., Bangsbo, J., & Pilegaard, H. (2017). PGC-1α and exercise intensity dependent adapta-tions in mouse skeletal muscle. PloS one, 12(10), e0185993. https://doi.org/10.1371/journal.pone.0185993

Briones, A. M., & Touyz, R. M. (2009). Moderate exercise decreases inflammation and oxidative stress in hypertension: but what are the mechanisms?. Hypertension (Dallas, Tex. : 1979), 54(6), 1206–1208. https://doi.org/10.1161/HYPERTENSIONAHA.109.136622

Chadt, A., & Al-Hasani, H. (2020). Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Archiv : European journal of physiology, 472(9), 1273–1298. https://doi.org/10.1007/s00424-020-02417-x

Chan, D. C., Pang, J., & Watts, G. F. (2016). Dyslipidemia in Obesity. In R. S. Ahima (Ed.), Metabolic Syndrome: A Com-prehensive Textbook (pp. 525-540). Cham: Springer International Publishing.

Chang, C. J., Jian, D. Y., Lin, M. W., Zhao, J. Z., Ho, L. T., & Juan, C. C. (2015). Evidence in obese children: contri-bution of hyperlipidemia, obesity-inflammation, and insulin sensitivity. PloS one, 10(5), e0125935. https://doi.org/10.1371/journal.pone.0125935

Conn, V. S., Koopman, R. J., Ruppar, T. M., Phillips, L. J., Mehr, D. R., & Hafdahl, A. R. (2014). Insulin Sensitivity Following Exercise Interventions: Systematic Review and Meta-Analysis of Outcomes Among Healthy Adults. Journal of primary care & community health, 5(3), 211–222. https://doi.org/10.1177/2150131913520328

Curran, M., Drayson, M. T., Andrews, R. C., Zoppi, C., Barlow, J. P., Solomon, T. P. J., & Narendran, P. (2020). The benefits of physical exercise for the health of the pancreatic β-cell: a review of the evidence. Experimental physiology, 105(4), 579–589. https://doi.org/10.1113/EP088220

David-Silva, A., Freitas, H. S., Okamoto, M. M., Sabino-Silva, R., Schaan, B. D., & Machado, U. F. (2013). Hepatocyte nuclear factors 1α/4α and forkhead box A2 regulate the solute carrier 2A2 (Slc2a2) gene expression in the liver and kidney of diabetic rats. Life sciences, 93(22), 805–813. https://doi.org/10.1016/j.lfs.2013.10.011

Dotzert, M. S., McDonald, M. W., Murray, M. R., Nickels, J. Z., Noble, E. G., & Melling, C. W. J. (2018). Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type 1 Diabetes. Canadian journal of diabetes, 42(4), 404–411. https://doi.org/10.1016/j.jcjd.2017.09.013

Douard, V., & Ferraris, R. P. (2013). The role of fructose transporters in diseases linked to excessive fructose intake. The Journal of physiology, 591(2), 401–414. https://doi.org/10.1113/jphysiol.2011.215731

El Meouchy, P., Wahoud, M., Allam, S., Chedid, R., Karam, W., & Karam, S. (2022). Hypertension Related to Obesi-ty: Pathogenesis, Characteristics and Factors for Control. International journal of molecular sciences, 23(20), 12305. https://doi.org/10.3390/ijms232012305

Fariss, M. W., Chan, C. B., Patel, M., Van Houten, B., & Orrenius, S. (2005). Role of mitochondria in toxic oxidative stress. Molecular interventions, 5(2), 94–111. https://doi.org/10.1124/mi.5.2.7

Ferraris, R. P., Choe, J. Y., & Patel, C. R. (2018). Intestinal Absorption of Fructose. Annual review of nutrition, 38, 41–67. https://doi.org/10.1146/annurev-nutr-082117-051707

Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M., & Sanyal, A. J. (2018). Mechanisms of NAFLD development and therapeutic strategies. Nature medicine, 24(7), 908–922. https://doi.org/10.1038/s41591-018-0104-9.

Fujiwara, Y., Eguchi, S., Murayama, H., Takahashi, Y., Toda, M., Imai, K., & Tsuda, K. (2019). Relationship between diet/exercise and pharmacotherapy to enhance the GLP-1 levels in type 2 diabetes. Endocrinology, diabetes & metabolism, 2(3), e00068. https://doi.org/10.1002/edm2.68

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of Type 2 Diabetes Mellitus. International journal of molecular sciences, 21(17), 6275. https://doi.org/10.3390/ijms21176275

Gong, Z., & Muzumdar, R. H. (2012). Pancreatic function, type 2 diabetes, and metabolism in aging. International journal of endocrinology, 2012, 320482. https://doi.org/10.1155/2012/320482

Gonzalez-Gil, A. M., & Elizondo-Montemayor, L. (2020). The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients, 12(6), 1899. https://doi.org/10.3390/nu12061899

Goran, M. I., Ulijaszek, S. J., & Ventura, E. E. (2013). High fructose corn syrup and diabetes prevalence: a global per-spective. Global public health, 8(1), 55–64. https://doi.org/10.1080/17441692.2012.736257

Guo, S., Huang, Y., Zhang, Y., Huang, H., Hong, S., & Liu, T. (2020). Impacts of exercise interventions on different diseases and organ functions in mice. Journal of sport and health science, 9(1), 53–73. https://doi.org/10.1016/j.jshs.2019.07.004

Hahn, M., van Krieken, P. P., Nord, C., Alanentalo, T., Morini, F., Xiong, Y., Eriksson, M., Mayer, J., Kostromina, E., Ruas, J. L., Sharpe, J., Pereira, T., Berggren, P. O., Ilegems, E., & Ahlgren, U. (2020). Topologically selective islet vulnerability and self-sustained downregulation of markers for β-cell maturity in streptozotocin-induced diabetes. Communications biology, 3(1), 541. https://doi.org/10.1038/s42003-020-01243-2

Hall, K. D., Heymsfield, S. B., Kemnitz, J. W., Klein, S., Schoeller, D. A., & Speakman, J. R. (2012). Energy balance and its components: implications for body weight regulation. The American journal of clinical nutrition, 95(4), 989–994. https://doi.org/10.3945/ajcn.112.036350

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4

Hattori, H., Hanai, Y., Oshima, Y., Kataoka, H., & Eto, N. (2021). Excessive Intake of High-Fructose Corn Syrup Drinks Induces Impaired Glucose Tolerance. Biomedicines, 9(5), 541. https://doi.org/10.3390/biomedicines9050541

He, F., Li, J., Liu, Z., Chuang, C. C., Yang, W., & Zuo, L. (2016). Redox Mechanism of Reactive Oxygen Species in Exercise. Frontiers in physiology, 7, 486. https://doi.org/10.3389/fphys.2016.00486

Hsu, Y. J., Lee, M. C., Huang, C. C., & Ho, C. S. (2021). The effects of different types of aquatic exercise training interventions on a high-fructose diet-fed mice. International journal of medical sciences, 18(3), 695–705. https://doi.org/10.7150/ijms.52347

Hu, L., Huang, X., You, C., Li, J., Hong, K., Li, P., Wu, Y., Wu, Q., Wang, Z., Gao, R., Bao, H., & Cheng, X. (2017). Prevalence of overweight, obesity, abdominal obesity and obesity-related risk factors in southern China. PloS one, 12(9), e0183934. https://doi.org/10.1371/journal.pone.0183934

Huang, H. H., Farmer, K., Windscheffel, J., Yost, K., Power, M., Wright, D. E., & Stehno-Bittel, L. (2011). Exercise increases insulin content and basal secretion in pancreatic islets in type 1 diabetic mice. Experimental diabetes research, 2011, 481427. https://doi.org/10.1155/2011/481427

Johnson, C. D. (2020). Training Principles for the Runner. In Clinical Care of the Runner (pp. 9-18): Elsevier. https://doi.org/10.1016/B978-0-323-67949-7.00002-1.

Kaneto, H., Miyatsuka, T., Kawamori, D., Yamamoto, K., Kato, K., Shiraiwa, T., Katakami, N., Yamasaki, Y., Matsu-hisa, M., & Matsuoka, T. A. (2008). PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function. Endocrine journal, 55(2), 235–252. https://doi.org/10.1507/endocrj.k07e-041

Karim, S., Adams, D. H., & Lalor, P. F. (2012). Hepatic expression and cellular distribution of the glucose transporter family. World journal of gastroenterology, 18(46), 6771–6781. https://doi.org/10.3748/wjg.v18.i46.6771

Khin, P. P., Lee, J. H., & Jun, H-S. (2023). Pancreatic Beta-cell Dysfunction in Type 2 Diabetes, European Journal of Inflammation. 21. https://doi.org/10.1177/1721727X231154152.

Kim, J. A., Wei, Y., & Sowers, J. R. (2008). Role of mitochondrial dysfunction in insulin resistance. Circulation research, 102(4), 401–414. https://doi.org/10.1161/CIRCRESAHA.107.165472

King, L. K., March, L., & Anandacoomarasamy, A. (2013). Obesity & osteoarthritis. The Indian journal of medical research, 138(2), 185–193.

Király, M. A., Bates, H. E., Kaniuk, N. A., Yue, J. T., Brumell, J. H., Matthews, S. G., Riddell, M. C., & Vranic, M. (2008). Swim training prevents hyperglycemia in ZDF rats: mechanisms involved in the partial maintenance of beta-cell function. American journal of physiology. Endocrinology and metabolism, 294(2), E271–E283. https://doi.org/10.1152/ajpendo.00476.2007

Klein, S., Gastaldelli, A., Yki-Järvinen, H., & Scherer, P. E. (2022). Why does obesity cause diabetes?. Cell metabolism, 34(1), 11–20. https://doi.org/10.1016/j.cmet.2021.12.012

Lancaster K. J. (2020). Current Intake and Demographic Disparities in the Association of Fructose-Rich Foods and Met-abolic Syndrome. JAMA network open, 3(7), e2010224. https://doi.org/10.1001/jamanetworkopen.2020.10224

Langlois, A., Vion, J., Dumond, A., Pinget, M., & Bouzakri, K. (2021) New Recommendations for T2D Management: Beneficial Impact of Exerkines on Pancreatic β-Cells Function and Glucose Homeostasis in Skeletal Muscle. J Diabetes Clin Res, 3, 85-93. https://doi.org/10.33696/diabetes.3.045

Latif, S., Utomo, D. N., & Rejeki, P. S. (2017). Combination of Aerobic and Resistance Exercise in Lowering Blood Glucose Levels Compared to Aerobic or Resistance Exercises in a Male Wistar Rat Model with Diabetes Mellitus.

Lee, H., & Song, W. (2018). Exercise and Mitochondrial Remodeling in Skeletal Muscle in Type 2 Diabetes. Journal of obesity & metabolic syndrome, 27(3), 150–157. https://doi.org/10.7570/jomes.2018.27.3.150

Leturque, A., Brot-Laroche, E., & Le Gall, M. (2009). GLUT2 mutations, translocation, and receptor function in diet sugar managing. American journal of physiology. Endocrinology and metabolism, 296(5), E985–E992. https://doi.org/10.1152/ajpendo.00004.2009

Leuchtmann, A. B., Furrer, R., Steurer, S. A., Schneider-Heieck, K., Karrer-Cardel, B., Sagot, Y., & Handschin, C. (2022). Interleukin-6 potentiates endurance training adaptation and improves functional capacity in old mice. Journal of cachexia, sarcopenia and muscle, 13(2), 1164–1176. https://doi.org/10.1002/jcsm.12949

Liu, S., Niu, Y., & Fu, L. (2019). Metabolic Adaptations to Exercise Training. Journal of Science in Sport and Exercise, 2(1), 1–6. https://doi.org/10.1007/s42978-019-0018-3.

Lu, Y., Wiltshire, H. D., Baker, J. S., & Wang, Q. (2021). Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology, 10(12), 1272. https://doi.org/10.3390/biology10121272

Lv, C., Sun, Y., Zhang, Z. Y., Aboelela, Z., Qiu, X., & Meng, Z. X. (2022). β-cell dynamics in type 2 diabetes and in dietary and exercise interventions. Journal of molecular cell biology, 14(7), mjac046. https://doi.org/10.1093/jmcb/mjac046

Ma, Z. A., Zhao, Z., & Turk, J. (2012). Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Experi-mental diabetes research, 2012, 703538. https://doi.org/10.1155/2012/703538

Maj, M., Harbottle, B., Thomas, P. A., Hernandez, G. V., Smith, V. A., Edwards, M. S., Fanter, R. K., Glanz, H. S., Immoos, C., Burrin, D. G., Santiago-Rodriguez, T. M., La Frano, M. R., & Manjarín, R. (2021). Consumption of High-Fructose Corn Syrup Compared with Sucrose Promotes Adiposity and Increased Triglyceridemia but Compa-rable NAFLD Severity in Juvenile Iberian Pigs. The Journal of nutrition, 151(5), 1139–1149. https://doi.org/10.1093/jn/nxaa441

Meyers, A. M., Mourra, D., & Beeler, J. A. (2017). High fructose corn syrup induces metabolic dysregulation and al-tered dopamine signaling in the absence of obesity. PloS one, 12(12), e0190206. https://doi.org/10.1371/journal.pone.0190206

Min, J. E., Green, D. B., & Kim, L. (2016). Calories and sugars in boba milk tea: implications for obesity risk in Asian Pacific Islanders. Food science & nutrition, 5(1), 38–45. https://doi.org/10.1002/fsn3.362

Miyata, M., Kasai, H., Kawai, K., Yamada, N., Tokudome, M., Ichikawa, H., Goto, C., Tokudome, Y., Kuriki, K., Hoshino, H., Shibata, K., Suzuki, S., Kobayashi, M., Goto, H., Ikeda, M., Otsuka, T., & Tokudome, S. (2008). Changes of urinary 8-hydroxydeoxyguanosine levels during a two-day ultramarathon race period in Japanese non-professional runners. International journal of sports medicine, 29(1), 27–33. https://doi.org/10.1055/s-2007-965072

Munir, M., Miftahussurur, M., Pranoto, A., & Rejeki, P. S. (2021). Exercise Intensity May Affect Bdnf Level in the Hippocampus of Fructose-Induced Mice. Indian J. Forensic Med. Toxicol. 15 (2021) 3636-3642. https://doi.org/10.37506/ijfmt.v15i3.15864

Nahdi, A. M. T. A., John, A., & Raza, H. (2017). Elucidation of Molecular Mechanisms of Streptozotocin-Induced Oxi-dative Stress, Apoptosis, and Mitochondrial Dysfunction in Rin-5F Pancreatic β-Cells. Oxidative medicine and cellular longevity, 2017, 7054272. https://doi.org/10.1155/2017/7054272

Narasimhan, A., Chinnaiyan, M., & Karundevi, B. (2015). Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. European journal of pharmacology, 761, 391–397. https://doi.org/10.1016/j.ejphar.2015.04.043

Narendran, P., Solomon, T. P., Kennedy, A., Chimen, M., & Andrews, R. C. (2015). The time has come to test the beta cell preserving effects of exercise in patients with new onset type 1 diabetes. Diabetologia, 58(1), 10–18. https://doi.org/10.1007/s00125-014-3412-8

Nonaka, Y., Takeda, R., Kano, Y., & Hoshino, D. (2020). Effects of acute 3-h swimming exercise on insulin secretion capacity of pancreatic islets. The Journal of Physical Fitness and Sports Medicine, 9, 173-179. https://doi.org/10.7600/jpfsm.9.173.

Nurdin, S., Nugraheni, N., & Wulan, M. (2019). Moderate Intensity of Physical Exercise increased Β (Beta) Cell and Size of Langerhans Islets in Streptozotocin Induced Diabetes Mellitus Rats. Surabaya Physical Medicine and Rehabilitation Journal, 1, 52. https://10.20473/spmrj.v1i2.2019.52-58

Ozougwu, J. C. (2017) Physiology of the liver. International Journal of Research in Pharmacy and Biosciences. 4, 13-24.

Pati, S., Irfan, W., Jameel, A., Ahmed, S., & Shahid, R. K. (2023). Obesity and Cancer: A Current Overview of Epide-miology, Pathogenesis, Outcomes, and Management. Cancers, 15(2), 485. https://doi.org/10.3390/cancers15020485

Pereira, R. M., Botezelli, J. D., da Cruz Rodrigues, K. C., Mekary, R. A., Cintra, D. E., Pauli, J. R., da Silva, A. S. R., Ropelle, E. R., & de Moura, L. P. (2017). Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients, 9(4), 405. https://doi.org/10.3390/nu9040405

Petersen, A. M., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. Journal of applied physiology (Bethes-da, Md. : 1985), 98(4), 1154–1162. https://doi.org/10.1152/japplphysiol.00164.2004

Piao, S. J., Kim, S. H., Suh, Y. J., Hong, S. B., Ahn, S. H., Seo, D. H., Park, I. S., & Nam, M. (2017). Beneficial Effects of Aerobic Exercise Training Combined with Rosiglitazone on Glucose Metabolism in Otsuka Long Evans Tokushima Fatty Rats. Diabetes & metabolism journal, 41(6), 474–485. https://doi.org/10.4093/dmj.2017.41.6.474

Pranoto, A., Wahyudi, E., Prasetya, R. E., Fauziyah, S., Kinanti, R. G., Sugiharto, S., & Rejeki, P. (2020). High intensity exercise increases brain derived neurotrophic factor expression and number of hippocampal neurons in rats. Compar-ative Exercise Physiology, 1-8. https://doi.org/10.3920/CEP190063

Prasun, P. (2020). Mitochondrial dysfunction in metabolic syndrome. Biochimica et biophysica acta. Molecular basis of dis-ease, 1866(10), 165838. https://doi.org/10.1016/j.bbadis.2020.165838

Qi, S., Li, X., Yu, J., & Liu, Y. (2024). Research advances in the application of metabolomics in exercise sci-ence. Frontiers in Physiology, 14. https://doi.org/10.3389/fphys.2023.1332104.

Qian, C., Yang, Q., Guo, L., Zhu, H., You, X., Liu, H., & Sun, Y. (2021). Exercise reduces hyperlipidemia-induced kidney damage in apolipoprotein E-deficient mice. Experimental and therapeutic medicine, 21(2), 153. https://doi.org/10.3892/etm.2020.9585

Rad, M. G., Sharifi, M., Meamar, R., & Soltani, N. (2022). The role of pancreas to improve hyperglycemia in STZ-induced diabetic rats by thiamine disulfide. Nutrition & diabetes, 12(1), 32. https://doi.org/10.1038/s41387-022-00211-5

Radak, Z., Zhao, Z., Koltai, E., Ohno, H., & Atalay, M. (2013). Oxygen consumption and usage during physical exer-cise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & redox signaling, 18(10), 1208–1246. https://doi.org/10.1089/ars.2011.4498

Rejeki, P. S., Utami, D., Izzatunnisa, N., Pranoto, A., Sukarno, D., & Fasitasari, M. (2021). High-Fat Diet Decreases Serum TNF-Alpha and Breast Tumor Area on Benzopyrene Induced Mice (Mus Musculus). Chiang Mai University Jour-nal of Natural Sciences, 20, e2021089. https://doi.org/10.12982/CMUJNS.2021.089.

Robertson, R., Zhou, H., Zhang, T., & Harmon, J. S. (2007). Chronic oxidative stress as a mechanism for glucose tox-icity of the beta cell in type 2 diabetes. Cell biochemistry and biophysics, 48(2-3), 139–146. https://doi.org/10.1007/s12013-007-0026-5

Sari, D. R, Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., & Rejeki, P. S. (2023). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose-Induced Mice. Retos, 51, 1194-1209. https://doi.org/10.47197/retos.v51.101189

Sarwar, R., Pierce, N., & Koppe, S. (2018). Obesity and nonalcoholic fatty liver disease: current perspectives. Diabetes, metabolic syndrome and obesity : targets and therapy, 11, 533–542. https://doi.org/10.2147/DMSO.S146339

Seino, S., Shibasaki, T., & Minami, K. (2010). Pancreatic beta-cell signaling: toward better understanding of diabetes and its treatment. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 86(6), 563–577. https://doi.org/10.2183/pjab.86.563

Sharif, K., Watad, A., Bragazzi, N. L., Lichtbroun, M., Amital, H., & Shoenfeld, Y. (2018). Physical activity and auto-immune diseases: Get moving and manage the disease. Autoimmunity reviews, 17(1), 53–72. https://doi.org/10.1016/j.autrev.2017.11.010

Sheludiakova, A., Rooney, K., & Boakes, R. A. (2012). Metabolic and behavioural effects of sucrose and fruc-tose/glucose drinks in the rat. European journal of nutrition, 51(4), 445–454. https://doi.org/10.1007/s00394-011-0228-x

Simões E Silva, L. L., Santos de Sousa Fernandes, M., Kubrusly, M. S., Muller, C. R., Américo, A. L. V., Stefano, J. T., Evangelista, F. S., Oliveira, C. P., & Jukemura, J. (2020). Effects of Aerobic Exercise Protocol on Genes Related to Insulin Resistance and Inflammation in the Pancreas of ob/ob Mice with NAFLD. Clinical and experimental gastroen-terology, 13, 223–234. https://doi.org/10.2147/CEG.S242393

Slentz, C. A., Bateman, L. A., Willis, L. H., Granville, E. O., Piner, L. W., Samsa, G. P., Setji, T. L., Muehlbauer, M. J., Huffman, K. M., Bales, C. W., & Kraus, W. E. (2016). Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia, 59(10), 2088–2098. https://doi.org/10.1007/s00125-016-4051-z

Sodhi, K., Puri, N., Favero, G., Stevens, S., Meadows, C., Abraham, N. G., Rezzani, R., Ansinelli, H., Lebovics, E., & Shapiro, J. I. (2015). Fructose Mediated Non-Alcoholic Fatty Liver Is Attenuated by HO-1-SIRT1 Module in Murine Hepatocytes and Mice Fed a High Fructose Diet. PloS one, 10(6), e0128648. https://doi.org/10.1371/journal.pone.0128648 (Retraction published PLoS One. 2021 Nov 4;16(11):e0259219)

Sokhanvardastjerdi, S., Banaeifar, A., Arshadi, S., & Zafari, A. (2020). The Effect of 12 Weeks Aerobic Training on PDX-1 and GLUT2 Gene Expression in the Pancreatic Tissue of Type 2 Diabetic Rats. J Iranian Journal of Diabetes Obe-sity.

Stanhope K. L. (2016). Sugar consumption, metabolic disease and obesity: The state of the controversy. Critical reviews in clinical laboratory sciences, 53(1), 52–67. https://doi.org/10.3109/10408363.2015.1084990.

Stasi, A., Cosola, C., Caggiano, G., Cimmarusti, M. T., Palieri, R., Acquaviva, P. M., Rana, G., & Gesualdo, L. (2022). Obesity-Related Chronic Kidney Disease: Principal Mechanisms and New Approaches in Nutritional Management. Frontiers in nutrition, 9, 925619. https://doi.org/10.3389/fnut.2022.925619

Stožer, A., Vodopivc, P., & Križančić Bombek, L. (2020). Pathophysiology of exercise-induced muscle damage and its structural, functional, metabolic, and clinical consequences. Physiological research, 69(4), 565–598. https://doi.org/10.33549/physiolres.934371

Stricker, S., Rudloff, S., Geier, A., Steveling, A., Roeb, E., & Zimmer, K. P. (2021). Fructose Consumption-Free Sug-ars and Their Health Effects. Deutsches Arzteblatt international, 118(5), 71–78. https://doi.org/10.3238/arztebl.m2021.0010

Sun, B., Chen, H., Xue, J., Li, P., & Fu, X. (2023). The role of GLUT2 in glucose metabolism in multiple organs and tissues. Molecular biology reports, 50(8), 6963–6974. https://doi.org/10.1007/s11033-023-08535-w

Susanti, N., Rachmawati, E., & Kristanti, R. A. (2019). Efek Diet Tinggi Fruktosa terhadap Profil Lipid Tikus Rattus Rattus norvegicus Strain Wistar. Journal of Islamic Medicine, 3, 26-35.

Taskinen, M. R., Packard, C. J., & Borén, J. (2019). Dietary Fructose and the Metabolic Syndrome. Nutrients, 11(9), 1987. https://doi.org/10.3390/nu11091987

Teodhora, T., Yuliana, D., & Toding, F. A. (2021). Ekspresi Glukosa Transporter-2 di Sel Beta Pankreas dan Sel Hepato-sit Tikus yang Diinduksi Diabetes Mellitus. Pharmaceutical Journal of Indonesia, 6, 131-135. https://doi.org/10.21776/ub.pji.2021.006.02.9

Ter Horst, K. W., & Serlie, M. J. (2017). Fructose Consumption, Lipogenesis, and Non-Alcoholic Fatty Liver Disease. Nutrients, 9(9), 981. https://doi.org/10.3390/nu9090981

Thorens B. (2015). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221–232. https://doi.org/10.1007/s00125-014-3451-1

Tomaz, L. M., Barbosa, M. R., Farahnak, Z., Lagoeiro, C. G., Magosso, N. S., Lavoie, J. M., & Perez, S. E. (2016). GLUT2 proteins and PPARγ transcripts levels are increased in liver of ovariectomized rats: reversal effects of re-sistance training. Journal of exercise nutrition & biochemistry, 20(2), 51–57. https://doi.org/10.20463/jenb.2016.06.20.2.7

Tomita T. (2016). Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosnian journal of basic medical sciences, 16(3), 162–179. https://doi.org/10.17305/bjbms.2016.919

Wang, F., Wang, X., Liu, Y., & Zhang, Z. (2021). Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle. Oxidative medicine and cellular longevity, 2021, 3846122. https://doi.org/10.1155/2021/3846122

Wang, J., Zhang, Q., Xia, J., & Sun, H. (2022). Moderate Treadmill Exercise Modulates Gut Microbiota and Improves Intestinal Barrier in High-Fat-Diet-Induced Obese Mice via the AMPK/CDX2 Signaling Pathway. Diabetes, metabolic syndrome and obesity : targets and therapy, 15, 209–223.https://doi.org/10.2147/DMSO.S346007

Widegren, U., Wretman, C., Lionikas, A., Hedin, G., & Henriksson, J. (2000). Influence of exercise intensity on ERK/MAP kinase signalling in human skeletal muscle. Pflugers Archiv : European journal of physiology, 441(2-3), 317–322. https://doi.org/10.1007/s004240000417

Wróel, T., Mazur, G., Dziegiel, P., Jeleń, M., Szuba, A., Kuliczkowski, K., & Zabel, M. (2006). Density of intranodal lymphatics and VEGF-C expression in B-cell lymphoma and reactive lymph nodes. Folia histochemica et cytobiologica, 44(1), 43–47.

Zanjani, S. B., Chodari, L., Bavil, F. M., Sadeghzadeh, P., & Shahabi, P. (2019). Effect of voluntary exercise on intracel-lular signalling pathways of angiogenesis in the sciatic nerve of type 1 diabetic castrated male rats. Physiology interna-tional, 106(1), 39–47. https://doi.org/10.1556/2060.106.2019.08

Zhang, C. H., Zhou, B. G., Sheng, J. Q., Chen, Y., Cao, Y. Q., & Chen, C. (2020). Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies. Pharmacological research, 159, 104984. https://doi.org/10.1016/j.phrs.2020.104984

Zhou, L., Zeng, Y., Liu, Y., Du, K., Luo, Y., Dai, Y., Pan, W., Zhang, L., Zhang, L., Tian, F., & Gu, C. (2024). Cellu-lar senescence and metabolic reprogramming model based on bulk/single-cell RNA sequencing reveals PTGER4 as a therapeutic target for ccRCC. BMC Cancer, 24(1). https://doi.org/10.1186/s12885-024-12234-5.

Zhou, Q., & Melton, D. A. (2018). Pancreas regeneration. Nature, 557(7705), 351–358. https://doi.org/10.1038/s41586-018-0088-0.

Descargas

Publicado

2024-08-03

Cómo citar

Harianto, T. D., Pamungkas, B. T., Rejeki, P. S., Wungu, C. D. K., Susanto, J., Izzatunnisa, N., Yuliawati, T. H., Halim, S., & Pranoto, A. (2024). El efecto de la intensidad del ejercicio sobre la expresión de GLUT-2 pancreático y hepático en ratones alimentados con alto contenido de fructose (The Effect of Exercise Intensity on Pancreatic and Liver GLUT-2 Expression in High Fructose-Fed Mice). Retos, 57, 35–47. https://doi.org/10.47197/retos.v57.104464

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 > >>