Los efectos beneficiosos de seis semanas de ejercicio de natación sobre la hormona del crecimiento y los niveles de cortisol en ratones macho (Mus musculus) (The beneficial effects of six weeks of swimming exercise on growth hormone and cortisol levels in male mice (Mus musculus))

Autores/as

  • Hilda Noor Dharmasanti Sport Health Science, Faculty of Medicine, Universitas Airlangga
  • Purwo Sri Rejeki Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-6285-4058
  • Sulistiawati Sulistiawati Department of Public Health Sciences - Preventive Medicine, Faculty of Medicine, Universitas Airlangga
  • Shariff Halim Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang
  • Muhamad Fauzi Antoni Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Irmantara Subagio Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Fajar Eka Samudra Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya https://orcid.org/0009-0009-4159-4048
  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-4080-9245

DOI:

https://doi.org/10.47197/retos.v59.109107

Palabras clave:

Growth hormone, cortisol, morning exercise, afternoon exercise, metabolism

Resumen

Este estudio tuvo como objetivo demostrar los efectos del ejercicio de natación de intensidad moderada por la mañana y por la noche durante 6 semanas sobre el aumento de los niveles de la hormona del crecimiento (GH) y la disminución de los niveles de cortisol en ratones macho (Mus musculus). Esta investigación es un estudio verdaderamente experimental con un diseño de prueba posterior a un grupo de control aleatorio. Un total de 33 ratones macho (Mus musculus) de ocho semanas de edad que pesaban entre 20 y 40 gramos se dividieron aleatoriamente en tres grupos: CN (n = 11; control sin intervención), ME (n = 11; ejercicio matutino) y AE. (n = 11; ejercicio vespertino). Se realizaron ejercicios matutinos y vespertinos de intensidad moderada durante 30 minutos por sesión con una frecuencia de 3 veces por semana durante 6 semanas. Se utilizó ELISA para evaluar los niveles de GH y cortisol posteriores a la prueba en todas las muestras. El análisis de los datos se realizó mediante ANOVA unidireccional, seguido de la prueba post hoc de diferencia honestamente significativa (HSD) de Tukey, con un nivel de significancia de p ≤ 0,05. Los resultados revelaron diferencias en el aumento de los niveles de GH entre ME vs CN (5,71±0,88 vs 2,54±0,21 ng/mL, p=0,001), AE vs CN (7,18±1,66 vs 2,54±0,21 ng/mL, p=0,001) y AE vs EM (7,18±1,66 vs 5,71±0,88 ng/mL, p=0,009). De manera similar, la disminución en los niveles de cortisol difirió entre ME vs CN (6,62±2,37 vs 10,69±4,38 ng/mL, p=0,004), AE vs CN (2,18±0,99 vs 10,69±4,38 ng/mL, p=0,001), y grupos AE vs ME (2,18±0,99 vs 6,62±2,37 ng/mL, p=0,008). Este estudio reveló que ambas duraciones de ejercicio aumentaron significativamente los niveles de la hormona del crecimiento y disminuyeron los niveles de cortisol en ratones macho (Mus musculus). Sin embargo, el ejercicio nocturno de intensidad moderada fue más eficaz para aumentar los niveles de la hormona del crecimiento y disminuir los niveles de cortisol que el ejercicio matutino de intensidad moderada en ratones macho (Mus musculus).

Palabras clave: Hormona del crecimiento, cortisol, ejercicio matutino, ejercicio vespertino, metabolismo

Abstract. This study aimed to demonstrate the effects of moderate-intensity swimming exercise in the morning and evening over 6 weeks on the increase in growth hormone (GH) levels and the decrease in cortisol levels in male mice (Mus musculus). This research is a true-experimental study with a randomized control group posttest-only design. A total of 33 eight-week-old male mice (Mus musculus) weighing 20–40 grams were randomly divided into three groups: CN (n = 11; control without intervention), ME (n = 11; morning exercise), and AE (n = 11; afternoon exercise). Morning and evening exercises with moderate intensity were conducted for 30 minutes per session with a frequency of 3 times per week for 6 weeks. ELISA was used to evaluate posttest GH and cortisol levels in all samples. Data analysis was performed via one-way ANOVA, followed by Tukey’s honestly significant difference (HSD) post hoc test, with a significance level of p ≤ 0.05. The results revealed differences in the increase in GH levels between ME vs CN (5.71±0.88 vs 2.54±0.21 ng/mL, p=0.001), AE vs CN (7.18±1.66 vs 2.54±0.21 ng/mL, p=0.001), and AE vs ME (7.18±1.66 vs 5.71±0.88 ng/mL, p=0.009). Similarly, the decrease in cortisol levels differed among the ME vs CN (6.62±2.37 vs 10.69±4.38 ng/mL, p=0.004), AE vs CN (2.18±0.99 vs 10.69±4.38 ng/mL, p=0.001), and AE vs ME (2.18±0.99 vs 6.62±2.37 ng/mL, p=0.008) groups. This study revealed that both exercise durations significantly increased growth hormone levels and decreased cortisol levels in male mice (Mus musculus). However, evening exercise with moderate intensity was more effective at increasing growth hormone levels and decreasing cortisol levels than morning exercise with moderate intensity in male mice (Mus musculus).

Keywords: Growth hormone, cortisol, morning exercise, afternoon exercise, metabolism

 

Citas

Alshafie, W., Francis, V., Bednarz, K., Pan, Y. E., Stroh, T., & McPherson, P. S. (2020). Regulated resurfacing of a somatostatin receptor storage compartment fine-tunes pituitary secretion. Journal of Cell Biology, 219(1), e201904054. https://doi.org/10.1083/jcb.201904054.

Antoni, M.F., Rejeki, P.S., Sulistiawati, Pranoto, A., Wigati, K.W., Sari, G.M., Lesmana, R., & Yamaoka, Y. (2022). Effect of nocturnal and diurnal moderate-intensity swimming exercise on increasing irisin level of female mice (Mus musculus). Chiang Mai University Journal of Natural Sciences, 21(2): e2022033. https://doi.org/10.12982/CMUJNS.2022.033.

Bednarz, K., Alshafie, W., Aufmkolk, S., Desserteaux, T., Markam, P. S., Storch, K.-F., & Stroh, T. (2020). Ultradian Secretion of Growth Hormone in Mice: Linking Physiology With Changes in Synapse Parameters Using Super-Resolution Microscopy. Frontiers in Neural Circuits, 14, 21. https://doi.org/10.3389/fncir.2020.00021.

Bertherat, J., Bluet-Pajot, M. T., & Epelbaum, J. (1995). Neuroendocrine regulation of growth hormone. European Journal of Endocrinology, 132(1), 12–24. https://doi.org/10.1530/eje.0.1320012.

Borer, K. T., De Sousa, M. J., Nindl, B. C., Stanford, K. I., & Pedersen, B. K. (2024). Editorial: Integrative exercise endocrinology. Frontiers in endocrinology, 14, 1350462. https://doi.org/10.3389/fendo.2023.1350462.

Butkus, J. A., Brogan, R. S., Giustina, A., Kastello, G., Sothmann, M., & Wehrenberg, W. B. (1995). Changes in the growth hormone axis due to exercise training in male and female rats: secretory and molecular responses. Endocrinology, 136(6), 2664–2670. https://doi.org/10.1210/endo.136.6.7750490.

Chourpiliadis, C., & Aeddula, N. R. (2023). Physiology, Glucocorticoids. In StatPearls. StatPearls Publishing.

Ennour-Idrissi, K., Maunsell, E., & Diorio, C. (2015). Effect of physical activity on sex hormones in women: a systematic review and meta-analysis of randomized controlled trials. Breast cancer research : BCR, 17(1), 139. https://doi.org/10.1186/s13058-015-0647-3.

Gomes, R. J., De Mello, M. A. R., Caetano, F. H., Sibuya, C. Y., Anaruma, C. A., Rogatto, G. P., Pauli, J. R., & Luciano, E. (2006). Effects of swimming training on bone mass and the GH/IGF-1 axis in diabetic rats. Growth Hormone & IGF Research, 16(5–6), 326–331. https://doi.org/10.1016/j.ghir.2006.07.003.

Gong, S., Miao, Y.-L., Jiao, G.-Z., Sun, M.-J., Li, H., Lin, J., Luo, M.-J., & Tan, J.-H. (2015). Dynamics and Correlation of Serum Cortisol and Corticosterone under Different Physiological or Stressful Conditions in Mice. PLOS ONE, 10(2), e0117503. https://doi.org/10.1371/journal.pone.0117503.

Hackney, A. C. (2006). Stress and the neuroendocrine system: The role of exercise as a stressor and modifier of stress. Expert Review of Endocrinology & Metabolism, 1(6), 783–792. https://doi.org/10.1586/17446651.1.6.783.

Hackney, A. C., & Walz, E. A. (2018). Hormonal adaptation and the stress of exercise training: The role of glucocorticoids.

Hu, M., Kong, Z., Shi, Q., & Nie, J. (2023). Acute effect of high-intensity interval training versus moderate-intensity continuous training on appetite-regulating gut hormones in healthy adults: a systematic review and meta-analysis. Heliyon, 9, e13129. https://doi.org/10.1016/j.heliyon.2023.e13129.

Ibrahimaj Gashi, A., Azemi, A., Zivkovic, V., Gontarev, S., & Gjorgovski, I. (2021). The effect of regular aerobic activity on cortisol levels in female Wistar rats. Biomedical Research and Therapy, 8(2), 4219–4227. https://doi.org/10.15419/bmrat.v8i2.660.

Kaimal, G., Ray, K., & Muniz, J. (2016). Reduction of Cortisol Levels and Participants’ Responses Following Art Making. Art Therapy, 33(2), 74–80. https://doi.org/10.1080/07421656.2016.1166832.

Kanaley, J. A., Weltman, J. Y., Pieper, K. S., Weltman, A., & Hartman, M. L. (2001). Cortisol and growth hormone responses to exercise at different times of day. The Journal of clinical endocrinology and metabolism, 86(6), 2881–2889. https://doi.org/10.1210/jcem.86.6.7566.

Kopchick, J. J., List, E. O., Kelder, B., Gosney, E. S., & Berryman, D. E. (2014). Evaluation of growth hormone (GH) action in mice: Discovery of GH receptor antagonists and clinical indications. Molecular and Cellular Endocrinology, 386(1–2), 34–45. https://doi.org/10.1016/j.mce.2013.09.004.

Liu, W., Xue, X., Xia, J., Liu, J., & Qi, Z. (2018). Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins. Journal of Affective Disorders, 227, 126–135. https://doi.org/10.1016/j.jad.2017.10.019.

Mohd Azmi, N. A. S., Juliana, N., Azmani, S., Mohd Effendy, N., Abu, I. F., Mohd Fahmi Teng, N. I., & Das, S. (2021). Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. International Journal of Environmental Research and Public Health, 18(2), 676. https://doi.org/10.3390/ijerph18020676.

Moholdt, T., Parr, E. B., Devlin, B. L., Debik, J., Giskeødegård, G., & Hawley, J. A. (2021). The effect of morning vs evening exercise training on glycemic control and serum metabolites in overweight/obese men: A randomized trial. Diabetologia, 64(9), 2061–2076. https://doi.org/10.1007/s00125-021-05477-5.

Moustafa, A., & Arisha, A. H. (2020). Swim therapy-induced tissue specific metabolic responses in male rats. Life Sciences, 262, 118516. https://doi.org/10.1016/j.lfs.2020.118516.

Nakamura, K., Aoike, A., Rokutan, K., Hosokawa, T., Koyama, K., & Kawai, K. (1989). The Role of Oxygen Radicals in the Pathogenesis of Gastric Mucosal Lesions Induced in Mice by Feeding-Restriction Stress. Scandinavian Journal of Gastroenterology, 24(sup162), 47–50. https://doi.org/10.3109/00365528909091122.

Nassar, E., Mulligan, C., Taylor, L., Kerksick, C., Galbreath, M., Greenwood, M., Kreider, R., & Willoughby, D. S. (2007). Effects of a single dose of N -Acetyl-5-methoxytryptamine (Melatonin) and resistance exercise on the growth hormone/IGF-1 axis in young males and females. Journal of the International Society of Sports Nutrition, 4(1), 14. https://doi.org/10.1186/1550-2783-4-14.

Ovejero, R., Novillo, A., Soto‐Gamboa, M., Mosca‐Torres, M. E., Cuello, P., Gregório, P., Jahn, G., & Carmanchahi, P. (2013). Do cortisol and corticosterone play the same role in coping with stressors? Measuring glucocorticoid serum in free‐ranging guanacos (Lama guanicoe). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319(10), 539–547. https://doi.org/10.1002/jez.1833.

Palabiyik, O., Tastekin, E., Doganlar, Z., Tayfur, P., Dogan, A., & Vardar, S. (2018). Alteration in cardiac PI3K/Akt/mTOR and ERK signaling pathways with the use of growth hormone and swimming, and the roles of miR21 and miR133. Biomedical Reports. https://doi.org/10.3892/br.2018.1179.

Palmer, A. J., Chung, M.-Y., List, E. O., Walker, J., Okada, S., Kopchick, J. J., & Berryman, D. E. (2009). Age-Related Changes in Body Composition of Bovine Growth Hormone Transgenic Mice. Endocrinology, 150(3), 1353–1360. https://doi.org/10.1210/en.2008-1199.

Poole, D. C., Copp, S. W., Colburn, T. D., Craig, J. C., Allen, D. L., Sturek, M., O’Leary, D. S., Zucker, I. H., & Musch, T. I. (2020). Guidelines for animal exercise and training protocols for cardiovascular studies. American Journal of Physiology-Heart and Circulatory Physiology, 318(5), H1100–H1138. https://doi.org/10.1152/ajpheart.00697.2019.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Ihsan, M., Herawati, L., Rahmanto, I., & Halim, S. (2024). Aerobic Exercise Increases Release of Growth Hormone in the Blood Circulation in Obese Women. Retos, 51, 726–731. https://doi.org/10.47197/retos.v51.99944.

Sabag, A., Little, J. P., & Johnson, N. A. (2022). Low‐volume high‐intensity interval training for cardiometabolic health. The Journal of Physiology, 600, 1013-1026. https://doi.org/10.1113/JP282965.

Safari, M. A., Koushkie Jahromi, M., Rezaei, R., Aligholi, H., & Brand, S. (2020). The Effect of Swimming on Anxiety-Like Behaviors and Corticosterone in Stressed and Unstressed Rats. International Journal of Environmental Research and Public Health, 17(18), 6675. https://doi.org/10.3390/ijerph17186675.

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice. Retos, 51, 1194–1209. https://doi.org/10.47197/retos.v51.101189.

Shen, B., Ma, C., Wu, G., Liu, H., Chen, L., & Yang, G. (2023). Effects of exercise on circadian rhythms in humans. Frontiers in pharmacology, 14, 1282357. https://doi.org/10.3389/fphar.2023.1282357.

Valenzuela, P. L., Ruilope, L. M., Santos-Lozano, A., Wilhelm, M., Kränkel, N., Fiuza-Luces, C., & Lucia, A. (2023). Exercise benefits in cardiovascular diseases: From mechanisms to clinical implementation. European Heart Journal, 44(21), 1874–1889. https://doi.org/10.1093/eurheartj/ehad170.

van Kerkhof, L. W., Van Dycke, K. C., Jansen, E. H., Beekhof, P. K., van Oostrom, C. T., Ruskovska, T., Velickova, N., Kamcev, N., Pennings, J. L., van Steeg, H., & Rodenburg, W. (2015). Diurnal Variation of Hormonal and Lipid Biomarkers in a Molecular Epidemiology-Like Setting. PloS one, 10(8), e0135652. https://doi.org/10.1371/journal.pone.0135652.

Viru, A. (1992). Plasma Hormones and Physical Exercise. International Journal of Sports Medicine, 13(03), 201–209. https://doi.org/10.1055/s-2007-1021254.

Wang, W., Duan, X., Huang, Z., Pan, Q., Chen, C., & Guo, L. (2021). The GH-IGF-1 Axis in Circadian Rhythm. Frontiers in molecular neuroscience, 14, 742294. https://doi.org/10.3389/fnmol.2021.742294.

Wang, R., Tian, H., Guo, D., Tian, Q., Yao, T., & Kong, X. (2020). Impacts of exercise intervention on various diseases in rats. Journal of Sport and Health Science, 9(3), 211–227. https://doi.org/10.1016/j.jshs.2019.09.008.

Won, S. J., & Lin, M. T. (1995). Thermal stresses reduce natural killer cell cytotoxicity. Journal of Applied Physiology, 79(3), 732–737. https://doi.org/10.1152/jappl.1995.79.3.732.

Yan, K., Gao, H., Liu, X., Zhao, Z., Gao, B., & Zhang, L. (2022). Establishment and identification of an animal model of long-term exercise-induced fatigue. Frontiers in Endocrinology, 13, 915937. https://doi.org/10.3389/fendo.2022.915937.

Zar, A., Ahmadi, F., Krustrup, P., & Fernandes, R. J. (2021). Effects of morning and afternoon high-intensity interval training (HIIT) on testosterone, cortisol and testosterone/cortisol ratio response in active men. Trends in Sport Sciences, 28, 179-185. https://doi.org/10.23829/TSS.2021.28.2-6.

Descargas

Publicado

2024-10-02

Cómo citar

Dharmasanti, H. N., Rejeki, P. S., Sulistiawati, S., Halim, S., Antoni, M. F., Subagio, I., Samudra, F. E., & Pranoto, A. (2024). Los efectos beneficiosos de seis semanas de ejercicio de natación sobre la hormona del crecimiento y los niveles de cortisol en ratones macho (Mus musculus) (The beneficial effects of six weeks of swimming exercise on growth hormone and cortisol levels in male mice (Mus musculus)). Retos, 59, 1126–1131. https://doi.org/10.47197/retos.v59.109107

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 > >>