El efecto de la intensidad del ejercicio sobre los parámetros antropométricos y el daño renal en ratones con alto contenido de fructosa (The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice)

Autores/as

DOI:

https://doi.org/10.47197/retos.v51.101189

Palabras clave:

Exercise, healthy lifestyle, obesity, renal histology

Resumen

La ingesta excesiva de fructosa altera el metabolismo de los carbohidratos y lípidos en el riñón, lo que provoca lesión renal. Se ha demostrado que el ejercicio mejora el metabolismo renal de los ácidos grasos, pero aún se desconoce el efecto de diversas intensidades de ejercicio en la prevención de los trastornos renales. El propósito de este estudio es analizar el efecto de varias intensidades de ejercicio sobre los parámetros antropométricos y el daño renal en ratones inducidos con alto contenido de fructosa. Los sujetos fueron treinta y seis ratones macho (20–30 g), de 8 semanas de edad, y se asignaron aleatoriamente en 4 grupos: HFr-Sed (sedentario), HFr-Ex1 (ejercicio de baja intensidad), HFr-Ex2 (ejercicio moderado- ejercicio de alta intensidad) y HFr-Ex3 (ejercicio de alta intensidad). Fueron alimentados con comida estándar y una solución alta en fructosa (30%), por vía oral, ad libitum durante 8 semanas. Los grupos ejercitados se sometieron a natación, con un 80% de duración máxima/sesión, 3 veces por semana, durante 8 semanas. El resultado mostró que hubo diferencias significativas en el peso corporal (p < 0,001), longitud corporal (p = 0,001), índice de Lee (p = 0,020), índice de masa corporal (IMC) (p = 0,004) y creatinina sérica (SCr). ) nivel (p < 0,001). Sin embargo, el índice de glomeruloesclerosis y el grado de fibrosis intersticial no fueron significativamente diferentes en todos los grupos. Se puede concluir que varias intensidades de ejercicio afectan la composición corporal y el nivel de SCr, especialmente la intensidad del ejercicio moderado, pero no tuvieron impacto en la mejora del riñón histológico en ratones con alto contenido de fructosa.

Palabras clave: Ejercicio, estilo de vida saludable, obesidad, histología renal.

Abstract. Excessive fructose intake disrupts carbohydrate and lipid metabolism in the kidney, resulting in kidney injury. Exercise has proven to improve the renal fatty acid metabolism, but the effect of various exercise intensities in preventing renal disorders is still unknown. The purpose of this study is to analyze the effect of various exercise intensities on anthropometric parameters and renal damage in high fructose-induced mice. The subjects were thirty-six male mice (20–30 g), aged 8 weeks were obtained and randomly assigned into 4 groups: HFr-Sed (sedentary), HFr-Ex1 (low-intensity exercise), HFr-Ex2 (moderate-intensity exercise), and HFr-Ex3 (high-intensity exercise). They were fed standard chow and high fructose solution (30%), per-oral, ad libitum for 8 weeks. The exercised groups underwent swimming, with 80% maximum duration/session, 3x/week, for 8 weeks. The result showed that there were significant differences in body weight (p < 0.001), body length (p = 0.001), Lee index (p = 0.020), Body Mass Index (BMI) (p = 0.004), and serum creatinine (SCr) level (p < 0.001). However, the glomerulosclerosis index and interstitial fibrosis degree were not significantly different in all groups. It can be concluded that various intensities of exercise affect the body composition and SCr level, especially moderate-intensity exercise, but do not impact the improvement of the histological kidney in high fructose-induced mice.

Keyword: Exercise, healthy lifestyle, obesity, renal histology.

Citas

Albar, C. F., Soelistijo, S. A., Miftahussurur, M., & Rejeki, P. S. (2021). The Expression of Visceral Fat Uncoupling Protein-1 is Higher in Moderate-Intensity Swimming than in Low or High-Intensity Swimming in Mice. Journal of International Dental and Medical Research, 14(2), 820-824.

Ali, B. H., Al-Salam, S., Al Za'abi, M., Al Balushi, K. A., Ramkumar, A., Waly, M. I., Yasin, J., Adham, S. A., & Nemmar, A. (2014). Does swimming exercise affect experimental chronic kidney disease in rats treated with gum acacia?. PloS one, 9(7), e102528. https://doi.org/10.1371/journal.pone.0102528.

Álvarez-Herrero, J. F., Martinez-Roig, R., & Urrea-Solano, M. (2022). Efficacy of food analysis applications in the redirection towards a healthy diet of university students. Retos, 45, 1087-1098. https://doi.org/10.47197/retos.v45i0.91376.

Alves, R., Suehiro, C. L., Oliveira, F. G., Frantz, E. D. C., Medeiros, R. F., Vieira, R. P., Martins, M. A., Lin, C. J., Nobrega, A. C. L. D., & Toledo-Arruda, A. C. (2020). Aerobic exercise modulates cardiac NAD(P)H oxidase and the NRF2/KEAP1 pathway in a mouse model of chronic fructose consumption. Journal of applied physiology (Bethesda, Md. : 1985), 128(1), 59–69. https://doi.org/10.1152/japplphysiol.00201.2019.

Anderson, E. & Durstine, JL. (2019). Physical activity, exercise, and chronic diseases: a brief review. Sport Med Heal Sci, 1(1):3–10. https://doi.org/10.1016%2Fj.smhs.2019.08.006.

Antoni, M.F., Rejeki, P.S., Sulistiawati, Pranoto, A., Wigati, K.W., Sari, G.M., Lesmana, R., & Yamaoka, Y. (2022). Effect of nocturnal and diurnal moderate-intensity swimming exercise on increasing irisin level of female mice (Mus musculus). Chiang Mai University Journal of Natural Sciences, 21(2): e2022033. https://doi.org/10.12982/CMUJNS.2022.033.

Aprilia, N. & Widyaningsih, V. (2019). The association between carbohydrate intake, fruit and vegetable consumption, and obesity among adult in Indonesia. In: Promoting Population Mental Health and Well-Being. Master Program in Public Health, Universitas Sebelas Maret, 85–85. https://doi.org/10.26911/theicph.2019.01.21.

Athanasiou, N., Bogdanis, G. C., & Mastorakos, G. (2023). Endocrine responses of the stress system to different types of exercise. Reviews in endocrine & metabolic disorders, 24(2), 251–266. https://doi.org/10.1007/s11154-022-09758-1.

Atmarita, Imanningsih N., Jahari, AB., Permaesih, ID., Chan, P. & Amarra, MS. (2018). Consumption and sources of added sugar in Indonesia: A review. Asia Pacific Journal of Clinical Nutrition, 27(1):47–64. https://doi.org/10.6133/apjcn.042017.07.

Berge, J., Hjelmesaeth, J., Hertel, J. K., Gjevestad, E., Småstuen, M. C., Johnson, L. K., Martins, C., Andersen, E., Helgerud, J., & Støren, Ø. (2021). Effect of Aerobic Exercise Intensity on Energy Expenditure and Weight Loss in Severe Obesity-A Randomized Controlled Trial. Obesity (Silver Spring, Md.), 29(2), 359–369. https://doi.org/10.1002/oby.23078.

Bernardis, LL. & Patterson BD. (1968). Correlation between “Lee index” and carcass fat content in weanling and adult female rats with hypothalamic lesions. Journal of Endocrinology, 40(4):527–8. https://doi.org/10.1677/joe.0.0400527.

Bier, A., Shapira, E., Khasbab, R., Sharabi, Y., Grossman, E. & Leibowitz, A. (2022). High-Fructose Diet Increases Renal ChREBPβ Expression, Leading to Intrarenal Fat Accumulation in a Rat Model with Metabolic Syndrome. Biology (Basel), 11(4):618. https://doi.org/10.3390%2Fbiology11040618.

Bond, B., Gates, PE., Jackman, SR., Corless, LM., Williams, CA. & Barker, AR. (2015). Exercise intensity and the protection from postprandial vascular dysfunction in adolescents. American journal of physiology. Heart and circulatory physiology, 308(11), H1443–H1450. https://doi.org/10.1152/ajpheart.00074.2015.

Brandt, N., Dethlefsen, M. M., Bangsbo, J., & Pilegaard, H. (2017). PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle. PloS one, 12(10), e0185993. https://doi.org/10.1371/journal.pone.0185993.

Brightwell, CR., Markofski, MM., Moro, T., Fry, CS., Porter, C., Volpi, E, & Rasmussen BB. (2019). Moderate‐intensity aerobic exercise improves skeletal muscle quality in older adults. Transl Sport Med, 2(3):109–19. https://doi.org/10.1002/tsm2.70.

Cerqueira, É., Marinho, D. A., Neiva, H. P., & Lourenço, O. (2020). Inflammatory Effects of High and Moderate Intensity Exercise-A Systematic Review. Frontiers in physiology, 10, 1550. https://doi.org/10.3389/fphys.2019.01550.

Chan, AML., Ng, AMH., Mohd Yunus, MH., Idrus, RBH., Law, JX., Yazid, MD…Lokanathan, Y. (2021). Recent developments in rodent models of high-fructose diet-induced metabolic syndrome: A systematic review. Nutrients, 13(8):1–21. https://doi.org/10.3390/nu13082497.

Chiu, CH., Ko, MC., Wu, LS., Yeh, DP., Kan, NW., Lee, PF… Ho, CC. (2017). Benefits of different intensity of aerobic exercise in modulating body composition among obese young adults: A pilot randomized controlled trial. Health Qual Life Outcomes, 15(1):1–9. https://doi.org/10.1186/s12955-017-0743-4.

Choi, E. Y., & Cho, Y. O. (2007). The effects of physical training on antioxidative status under exercise-induced oxidative stress. Nutrition research and practice, 1(1), 14–18. https://doi.org/10.4162/nrp.2007.1.1.14.

Consitt, L. A., Wideman, L., Hickey, M. S., & Morrison, R. F. (2008). Phosphorylation of the JAK2-STAT5 pathway in response to acute aerobic exercise. Medicine and science in sports and exercise, 40(6), 1031–1038. https://doi.org/10.1249/MSS.0b013e3181690760.

Deemer, S. E., Castleberry, T. J., Irvine, C., Newmire, D. E., Oldham, M., King, G. A., Ben-Ezra, V., Irving, B. A., & Biggerstaff, K. D. (2018). Pilot study: an acute bout of high intensity interval exercise increases 12.5 h GH secretion. Physiological reports, 6(2), e13563. https://doi.org/10.14814/phy2.13563.

Dehghan, M., Mente, A., Zhang, X., Swaminathan, S., Li, W., Mohan, V., et al. (2016). Prospective Urban Rural Epidemiology (PURE) study investigators. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet (London, England), 390(10107), 2050–2062. https://doi.org/10.1016/S0140-6736(17)32252-3.

Dewi, PRP., Hairrudin, H. & Normasari, R. (2016) The effect of physical stress on SCr of male rattus norvegicus. Pustaka Kesehatan, 4(2):218-221.

Diggle, C. P., Shires, M., Leitch, D., Brooke, D., Carr, I. M., Markham, A. F., Hayward, B. E., Asipu, A., & Bonthron, D. T. (2009). Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society, 57(8), 763–774. https://doi.org/10.1369/jhc.2009.953190.

Donate, F. I., Sánchez-Oliver, A. J., Benito, P. J., Elvar, J. R. H., Suarez-Carmona, W., & Butragueño, J. (2023). Guide for designing intervention programs for populations with obesity: Positioning Document by the Physical Exercise Group of the Spanish Society for the Study of Obesity (SEEDO). Retos, 50, 33-49. https://doi.org/10.47197/retos.v50.99282

Duclos, M., & Tabarin, A. (2016). Exercise and the hypothalamo-pituitary-adrenal axis. Frontiers of hormone research, 47, 12–26. https://doi.org/10.1159/000445149.

Duran-Ortiz, S., List, E. O., Ikeno, Y., Young, J., Basu, R., Bell, S., McHugh, T., Funk, K., Mathes, S., Qian, Y., Kulkarni, P., Yakar, S., Berryman, D. E., & Kopchick, J. J. (2021). Growth hormone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging cell, 20(12), e13506. https://doi.org/10.1111/acel.13506.

Ebrahimpour-Koujan, S., Saneei P., Larijani B. & Esmaillzadeh, A. (2020). Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: a systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition, 60(1):1–10. https://doi.org/10.1080/10408398.2018.1503155.

Elsisy, R., El-Magd, M., Abdelkarim, M. (2021). High-fructose diet induces earlier and more severe kidney damage than high-fat diet on rats. Egyptian Journal of Histology, 44(2), 535-544. doi: 10.21608/ejh.2020.31508.1304.

Epingeac, M. E., Gaman, M. A., Diaconu, C. C., Gad, M., & Gaman, A. M. (2019). The evaluation of oxidative stress levels in obesity. Rev Chim (Bucharest), 70(6), 2241-2244.

Esmailiyan, M., Amerizadeh, A., Vahdat, S., Ghodsi, M., Doewes, RI. & Sundram, Y. (2021). Effect of different types of aerobic exercise on individuals with and without hypertension: an updated systematic review. Current Problems in Cardiology, 101034. https://doi.org/10.1016/j.cpcardiol.2021.101034.

Evangelista, FS., Brum, PC. & Krieger, JE. (2003). Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Brazilian Journal of Medical and Biological Research, 36(12):1751–9. https://doi.org/10.1590/s0100-879x2003001200018.

Farris, A. B., & Colvin, R. B. (2012). Renal interstitial fibrosis: mechanisms and evaluation. Current opinion in nephrology and hypertension, 21(3), 289–300. https://doi.org/10.1097/MNH.0b013e3283521cfa.

Fauzi, Antoni M., Sri Rejeki, P., Sulistiawati, D., Pranoto, A. & Sugiharto, D. (2022). Moderate-Intensity Swimming Exercises Decrease Body Weight and Lee’s Obesity Index in Female Mice (Mus musculus). International Journal of Research Publications, 93(1). http://dx.doi.org/10.47119/IJRP100931120222779.

Ferlazzo, A., Cravana, C., Fazio, E., & Medica, P. (2020). The different hormonal system during exercise stress coping in horses. Veterinary world, 13(5), 847–859. https://doi.org/10.14202/vetworld.2020.847-859.

Ferreira-Santos, P., Aparicio, R., Carrón, R., Montero, MJ. & Sevilla, MÁ. (2020). Lycopene-supplemented diet ameliorates metabolic syndrome induced by fructose in rats. J Funct Foods, 73(7):104098. https://doi.org/10.1016/j.jff.2020.104098.

Gai, Z., Wang, T., Visentin, M., Kullak-Ublick, GA., Fu, X. & Wang, Z. (2019). Lipid accumulation and chronic kidney disease. Nutrients, 11(4):1–21. https://doi.org/10.3390%2Fnu11040722.

Gomes, R. J., de Mello, M. A., Caetano, F. H., Sibuya, C. Y., Anaruma, C. A., Rogatto, G. P., Pauli, J. R., & Luciano, E. (2006). Effects of swimming training on bone mass and the GH/IGF-1 axis in diabetic rats. Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF Research Society, 16(5-6), 326–331. https://doi.org/10.1016/j.ghir.2006.07.003.

Gounden V, Bhatt H, Jialal I. Renal Function Tests. [Updated 2022 Jul 18]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507821.

Gowda, S., Desai, P. B., Kulkarni, S. S., Hull, V. V., Math, A. A., & Vernekar, S. N. (2010). Markers of renal function tests. North American journal of medical sciences, 2(4), 170–173.

Gyurászová, M., Gurecká, R., Bábíčková, J., & Tóthová, Ľ. (2020). Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxidative medicine and cellular longevity, 2020, 5478708. https://doi.org/10.1155/2020/5478708.

Hackney A. C. (2006). Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert review of endocrinology & metabolism, 1(6), 783–792. https://doi.org/10.1586/17446651.1.6.783.

Hall, JE. & Hall, ME. (2021) Chapter 76: Pituitary hormones and their control by the hypothalamus in Guyton and Hall Textbook of Medical Physiology. Fourteenth edition. Philadelphia: Elsevier: 932-935.

Hardy, DS., Garvin, JT. & Xu, H. (2020). Carbohydrate quality, glycemic index, glycemic load and cardiometabolic risks in the US, Europe and Asia: A dose–response meta-analysis. Nutrition, Metabolism and Cardiovascular Diseases, 30(6):853–71. https://doi.org/10.1016/j.numecd.2019.12.050.

Hejazi, SM. (2017) Effects of high intensity interval training on plasma levels of GH and IGF-I. International Journal of Medical Research and Health Sciences, 6(4), 55-9.

Hernández-Díazcouder, A., Romero-Nava, R., Carbó, R., Sánchez-Lozada, LG. & Sánchez-Muñoz, F. (2019). High fructose intake and adipogenesis. International Journal of Molecular Sciences, 20(11). https://doi.org/10.3390/ijms20112787.

Hu, G., Xu, L., Ma, Y., Kohzuki, M. & Ito, O. (2020). Chronic exercise provides renal protective effects with upregulation of fatty acid oxidation in the kidney of high fructose-fed rats. American Journal of Physiology-Renal Physiology, 318(3): F826–34. https://doi.org/10.1152/ajprenal.00444.2019.

Ito, D., Cao, P., Kakihana, T., Sato, E., Suda, C., Muroya, Y... Kiyomoto, H. (2015). Chronic running exercise alleviates early progression of nephropathy with upregulation of nitric oxide synthases and suppression of glycation in Zucker diabetic rats. PLoS One, 10(9):1–21. https://doi.org/10.1371/journal.pone.0138037.

Jakicic, JM., Powell, KE., Campbell, WW., Dipietro, L., Pate, RR., Pescatello, LS… Piercy, KL. (2019). Physical Activity and the Prevention of Weight Gain in Adults: A Systematic Review. Medicine & Science in Sports & Exercise, 51(6):1262–9. https://doi.org/10.1249/mss.0000000000001938.

Jang, HS., Noh, MR., Kim, J. & Padanilam BJ. (2020). Defective mitochondrial fatty acid oxidation and lipotoxicity in kidney diseases. Frontiers in Medicine, 7(3):1–8. https://doi.org/10.3389/fmed.2020.00065.

Kanuri, G., Spruss, A., Wagnerberger, S., Bischoff, SC. & Bergheim, I. (2011). Fructose-induced steatosis in mice: role of plasminogen activator inhibitor-1, microsomal triglyceride transfer protein and NKT cells. Laboratory Investigation, 91(6):885–95. https://doi.org/10.1038/labinvest.2011.44.

Kawamura, T., & Muraoka, I. (2018). Exercise-Induced Oxidative Stress and the Effects of Antioxidant Intake from a Physiological Viewpoint. Antioxidants (Basel, Switzerland), 7(9), 119. https://doi.org/10.3390/antiox7090119.

Khalafi, M., Mohebbi, H., Symonds, M. E., Karimi, P., Akbari, A., Tabari, E., Faridnia, M., & Moghaddami, K. (2020). The Impact of Moderate-Intensity Continuous or High-Intensity Interval Training on Adipogenesis and Browning of Subcutaneous Adipose Tissue in Obese Male Rats. Nutrients, 12(4), 925. https://doi.org/10.3390/nu12040925.

Khorshidian, N., Shadnoush, M., Zabihzadeh Khajavi, M., Sohrabvandi, S., Yousefi, M. & Mortazavian, AM. (2021). Fructose and high fructose corn syrup: are they a two-edged sword?. International Journal of Food Sciences and Nutrition, 72(5):592–614. https://doi.org/10.1080/09637486.2020.1862068.

Kim, D-H., Kim, S-H., Kim, W-H. & Moon, C-R. (2013). The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats. Journal of Exercise Nutrition & Biochemistry, 17(4):199–207. https://doi.org/10.5717/jenb.2013.17.4.199.

Kim, H. K., Konishi, M., Takahashi, M., Tabata, H., Endo, N., Numao, S., Lee, S. K., Kim, Y. H., Suzuki, K., & Sakamoto, S. (2015). Effects of Acute Endurance Exercise Performed in the Morning and Evening on Inflammatory Cytokine and Metabolic Hormone Responses. PloS one, 10(9), e0137567. https://doi.org/10.1371/journal.pone.0137567.

Kim, HK., Ando, K., Tabata, H., Konishi, M., Takahashi, M., Nishimaki, M… Sakamoto, S. (2016). Effects of different intensities of endurance exercise in morning and evening on the lipid metabolism response. Journal of Sports Science and Medicine, 15(3):467–76. http://www.ncbi.nlm.nih.gov/pmc/articles/pmc4974859/.

Kim, YJ., Kim, HJ., Lee, SG., Kim, DH., In, Jang S., Go, HS., Seong, JK. (2022). Aerobic exercise for eight weeks provides protective effects towards liver and cardiometabolic health and adipose tissue remodeling under metabolic stress for one week: A study in mice. Metabolism, 130(2):155178. https://doi.org/10.1016/j.metabol.2022.155178.

Kliszczewicz, B., Markert, C. D., Bechke, E., Williamson, C., Clemons, K. N., Snarr, R. L., & McKenzie, M. J. (2021). Acute Effect of Popular High-Intensity Functional Training Exercise on Physiologic Markers of Growth. Journal of strength and conditioning research, 35(6), 1677–1684. https://doi.org/10.1519/JSC.0000000000002933.

Kolnes, K. J., Petersen, M. H., Lien-Iversen, T., Højlund, K., & Jensen, J. (2021). Effect of Exercise Training on Fat Loss-Energetic Perspectives and the Role of Improved Adipose Tissue Function and Body Fat Distribution. Frontiers in physiology, 12, 737709. https://doi.org/10.3389/fphys.2021.737709.

Laboratory, TJ. (2016). Life span as biomarker. 4–6. Available from: https://www.jax.org/research-and-faculty/research-labs/the-harrison-lab/gerontology/life-span-as-a-biomarker#:~:text=Mature%20adult%3A%203%E2%80%936%20months%20of%20age&text=For%20the%20mature%20adult%20group,structures%20until%20about%20three%20months.

Langleite, T. M., Jensen, J., Norheim, F., Gulseth, H. L., Tangen, D. S., Kolnes, K. J., Heck, A., Storås, T., Grøthe, G., Dahl, M. A., Kielland, A., Holen, T., Noreng, H. J., Stadheim, H. K., Bjørnerud, A., Johansen, E. I., Nellemann, B., Birkeland, K. I., & Drevon, C. A. (2016). Insulin sensitivity, body composition and adipose depots following 12 w combined endurance and strength training in dysglycemic and normoglycemic sedentary men. Archives of physiology and biochemistry, 122(4), 167–179. https://doi.org/10.1080/13813455.2016.1202985.

Laurens, C., de Glisezinski, I., Larrouy, D., Harant, I., & Moro, C. (2020). Influence of Acute and Chronic Exercise on Abdominal Fat Lipolysis: An Update. Frontiers in physiology, 11, 575363. https://doi.org/10.3389/fphys.2020.575363.

Layton, C., & Bancroft, JD SS. (2019). Bancroft’s Theory and Practice of Histological Techniques. 8th edition. China: Elsevier.

Leunda-Goni, I., Jauregui, P., & Figueras, S. (2023). Exercise Dependence in Endurance Sports: Relationship to Sport Motivation and Exercise Identity. Retos, 51, 455-469. http://dx.doi.org/10.47197/retos.v51.99218.

List, E. O., Berryman, D. E., Buchman, M., Jensen, E. A., Funk, K., Duran-Ortiz, S., Qian, Y., Young, J. A., Slyby, J., McKenna, S., & Kopchick, J. J. (2019). GH Knockout Mice Have Increased Subcutaneous Adipose Tissue With Decreased Fibrosis and Enhanced Insulin Sensitivity. Endocrinology, 160(7), 1743–1756. https://doi.org/10.1210/en.2019-00167.

Liu, Y., Dong, G., Zhao, X., Huang, Z., Li, P., & Zhang, H. (2020). Post-exercise Effects and Long-Term Training Adaptations of Hormone Sensitive Lipase Lipolysis Induced by High-Intensity Interval Training in Adipose Tissue of Mice. Frontiers in physiology, 11, 535722. https://doi.org/10.3389/fphys.2020.535722.

Lu, Y., Wiltshire, H. D., Baker, J. S., & Wang, Q. (2021). Effects of High Intensity Exercise on Oxidative Stress and Antioxidant Status in Untrained Humans: A Systematic Review. Biology, 10(12), 1272. https://doi.org/10.3390/biology10121272.

Luan, X., Tian, X., Zhang, H., Huang, R., Li, N., Chen, P. & Wang, R. (2019). Exercise as a prescription for patients with various diseases. Journal of Sport and Health Science, 8(5):422–41. https://doi.org/10.1016/j.jshs.2019.04.002.

Lui, J. C., & Baron, J. (2011). Mechanisms limiting body growth in mammals. Endocrine reviews, 32(3), 422–440. https://doi.org/10.1210/er.2011-0001.

Luo, M., Luo, S., Xue, Y., Chang, Q., Yang, H., Dong, W…Cao, S. (2023). Aerobic exercise inhibits renal EMT by promoting irisin expression in SHR. iScience, 26(2), 105990. https://doi.org/10.1016/j.isci.2023.105990.

Macedo, AG., Oliveira, DM de. & Simionato, AR. (2019). The Influence of the Aerobic Training on Muscle Hypertrophy: Literature Review. Journal of Health Sciences, 21(4):382–5. http://doi.org/10.17921/2447-8938.2019v21n4p382-5.

Maillard, F., Pereira, B., & Boisseau, N. (2018). Effect of High-Intensity Interval Training on Total, Abdominal and Visceral Fat Mass: A Meta-Analysis. Sports medicine (Auckland, N.Z.), 48(2), 269–288. https://doi.org/10.1007/s40279-017-0807-y.

Malafaia, A. B., Nassif, P. A., Ribas, C. A., Ariede, B. L., Sue, K. N., & Cruz, M. A. (2013). Obesity induction with high fat sucrose in rats. Arquivos brasileiros de cirurgia digestiva : ABCD = Brazilian archives of digestive surgery, 26 Suppl 1, 17–21. https://doi.org/10.1590/s0102-67202013000600005.

Malik, VS. & Hu, FB. (2015). Fructose and cardiometabolic health. Journal of the American College of Cardiology, 66(14):1615–24. https://doi.org/10.1016%2Fj.jacc.2015.08.025.

Mi, C., Qin, X., Hou, Z. & Gao, F. (2019). Moderate-intensity exercise allows enhanced protection against oxidative stress-induced cardiac dysfunction in spontaneously hypertensive rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 52(6): e8009. https://doi.org/10.1590%2F1414-431X20198009.

Mika, A., Macaluso, F., Barone, R., Di Felice, V., & Sledzinski, T. (2019). Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue. Frontiers in physiology, 10, 26. https://doi.org/10.3389/fphys.2019.00026.

Mizuno, E., Wakimoto, Y., Nomura, M., Kohara, Y., Shimaya, S., Suzuki, R., & Moriyama, H. (2018). Effects of different exercises on the growth plate in young growing mice. Biomedical Research, 29(12), 2620-2626.

Mostarda, C., Moraes-Silva, I. C., Salemi, V. M., Machi, J. F., Rodrigues, B., De Angelis, K., Farah, V.deM., & Irigoyen, M. C. (2012). Exercise training prevents diastolic dysfunction induced by metabolic syndrome in rats. Clinics (Sao Paulo, Brazil), 67(7), 815–820. https://doi.org/10.6061/clinics/2012(07)18.

Muscella, A., Stefàno, E., Lunetti, P., Capobianco, L., & Marsigliante, S. (2020). The Regulation of Fat Metabolism During Aerobic Exercise. Biomolecules, 10(12), 1699. https://doi.org/10.3390/biom10121699.

Mustafa, NG. & Hasan, MK. (2019). Biochemical investigation of an experimentally induced metabolic syndrome in rats. Indian Journal of Animal Research, 54(2):168–72. https://doi.org/10.18805/ijar.B-1028.

Myers, J., Kokkinos, P., & Nyelin, E. (2019). Physical Activity, Cardiorespiratory Fitness, and the Metabolic Syndrome. Nutrients, 11(7), 1652. https://doi.org/10.3390/nu11071652.

Nakagawa, T. & Kang, DH. (2021). Fructose in the kidney: from physiology to pathology. Kidney Research and Clinical Practice, 40(4):527–41. https://doi.org/10.23876%2Fj.krcp.21.138.

Nakagawa, T., Johnson, RJ., Andres-Hernando, A., Roncal-Jimenez, C., Sanchez-Lozada, LG., Tolan, DR & Lanaspa, MA. (2020). Fructose production and metabolism in the kidney. Journal of the American Society of Nephrology, 31(5):898–906. https://doi.org/10.1681/asn.2019101015.

Nogueira, PAS., Pereira, MP., Soares, JJG., Filho, AFN., Tanimoto, IMF., Fonseca, IAT., Zanon, RG. (2017). Physiological adaptations induced by swimming in mice fed a high fat diet. Journal of Exercise Rehabilitation, 13(3):284–91. https://doi.org/10.12965%2Fjer.1734944.472.

Novelli, ELB., Diniz, YS., Galhardi, CM., Ebaid, GMX., Rodrigues, HG., Mani, F…Filho, JLVBN. (2007). Anthropometrical parameters and markers of obesity in rats. Laboratory Animals, 41(1):111–9. https://doi.org/10.1258/002367707779399518.

Obradovic, M., Sudar-Milovanovic, E., Soskic, S., Essack, M., Arya, S., Stewart, A.J., Isenovic, ER. (2021). Leptin and obesity: role and clinical implication. Frontiers in Endocrinology, 12(5):1–14. https://doi.org/10.3389/fendo.2021.585887.

Osawa, Y., Azuma, K., Tabata, S., Katsukawa, F., Ishida, H., Oguma, Y., Matsumoto, H. (2014). Effects of 16-week high-intensity interval training using upper and lower body ergometers on aerobic fitness and morphological changes in healthy men: a preliminary study. Open Access J Sport Med, 257–65. https://doi.org/10.2147/oajsm.s68932.

Pranoto, A., Wahyudi, E., Prasetya, RE., Fauziyah, S., Kinanti, RG., Sugiharto, S. & Rejeki, PS. (2020). High intensity exercise increases brain derived neurotrophic factor expression and number of hippocampal neurons in rats. Comparative Exercise Physiology, 16(4):325–32. https://doi.org/10.3920/CEP190063.

Purwantiningrum, D. A. (2006). The Effect of Light and Heavy Intensity Swimming Training on Bone Length, Height and Number of Chondrocytic Plate Tibial Plates of Growth-aged Male White Rats: Laboratory Experimental Research. (Doctoral dissertation). Surabaya: Airlangga University.

Putra, RQJ. (2016). The use and handling of experimental rodents in research is in accordance with animal welfare. Animal husbandry research and development center. Center for Animal Husbandry Research and Development, pp 81.

Rahayu, FK., Dwiningsih, SR., Sa’adi, A. & Herawati, L. (2021). Effects of different intensities of exercise on folliculogenesis in mice: Which is better? Clinical and Experimental Reproductive Medicine, 48(1):43–9. https://doi.org/10.5653/cerm.2020.03937.

Rejeki, P.S., Utami, D.M., Izzatunnisa, N., Pranoto,A., Sukarno, D.A., and Fasitasari, M. 2021. A high-fat diet decreases serum TNF-alpha and breast tumor area on benzopyrene induced mice (Mus musculus). Chiang Mai University Journal of Natural Sciences, 20(4): e2021089. https://doi.org/10.12982/CMUJNS.2021.089.

Rejeki, P. S., Rahim, A. F., & Prasetya, R. E. (2018). Effect of physical training towards body balance in overweight condition. Biomolecular and Health Science Journal, 1(2), 141-144.

Rivera, I., Röling, E., & Kappes, M. (2023). Intradialysis physical exercise programs that improve biochemical parameters and dialysis dose (kt/v) in adult patients with chronic renal failure on hemodialysis. Systematic Review. Retos, 49, 891-904. https://doi.org/10.47197/retos.v49.97259.

Rizkalla, SW. (2010). Health implications of fructose consumption: A review of recent data. Nutrition & Metabolism, 7:1–17. https://doi.org/10.1186%2F1743-7075-7-82.

Sabag, A., Chang, D., & Johnson, N. A. (2021). Growth Hormone as a Potential Mediator of Aerobic Exercise-Induced Reductions in Visceral Adipose Tissue. Frontiers in physiology, 12, 623570. https://doi.org/10.3389/fphys.2021.623570.

Salem, H. R., & Faried, M. A. (2021). Treadmill Exercise Training Ameliorates Functional and Structural Age-Associated Kidney Changes in Male Albino Rats. TheScientificWorldJournal, 2021, 1393372. https://doi.org/10.1155/2021/1393372.

Salim, H. M., Kurnia, L. F., & Bintarti, T. W. (2018). The effects of high-fat diet on histological changes of kidneys in rats. Biomolecular and Health Science Journal, 1(2), 109-112.

Schlondorff D. O. (2008). Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney international, 74(7), 860–866. https://doi.org/10.1038/ki.2008.351.

Schwalm, C., Jamart, C., Benoit, N., Naslain, D., Prémont, C., Prévet, J., Van Thienen, R., Deldicque, L., & Francaux, M. (2015). Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 29(8), 3515–3526. https://doi.org/10.1096/fj.14-267187.

Seidelmann, SB., Claggett, B., Cheng, S., Henglin, M., Shah, A., & Steffen, LM. (2018). Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis. The Lancet Public Health, 3(9): e419–28. https://doi.org/10.1016/s2468-2667(18)30135-x.

Şener, T. E., Çevik, Ö., Çetinel, Ş. U. L. E., & Şener, G. Ö. K. S. E. L. (2020). Oxidative stress and urinary system damage in fructose-induced rat model of metabolic syndrome: Effect of calorie restriction and exercise. Journal of Research in Pharmacy, 24(3), 318-25.

Shakil-ur-Rehman, S., Karimi, H. & Gillani, SA. (2017). Effects of supervised structured aerobic exercise training program on fasting blood glucose level, plasma insulin level, glycemic control, and insulin resistance in type 2 diabetes mellitus. Pakistan Journal of Medical Sciences, 33(3):576–80. https://doi.org/10.12669/pjms.333.12023.

Sugiharto, S., Merawati, D., Pranoto, A., Winarno, M. E., Susanto, H., & Taufiq, A. (2023). Moderate-intensity exercise on total energy expenditure in adolescent obese women. AIP Conference Proceedings, 2634, 020052.

Ter Horst, KW. & Serlie, MJ. (2017). Fructose consumption, lipogenesis, and non-alcoholic fatty liver disease. Nutrients, 9(9):1–20. https://doi.org/10.3390%2Fnu9090981.

Wu, B., Ding, J., Chen, A., Song, Y., Xu, C., Tian, F., & Zhao, J. (2022). Aerobic exercise improves adipogenesis in diet-induced obese mice via the lncSRA/p38/JNK/PPARγ pathway. Nutrition research (New York, N.Y.), 105, 20–32. https://doi.org/10.1016/j.nutres.2022.04.004.

Wulansari, DD. (2018). Pengembangan model hewan coba tikus diabetes mellitus tipe 2 dengan induksi diet tinggi fruktosa intragastrik. MPI (Media Pharm Indonesia), 2(1):41–7. https://doi.org/10.24123/mpi.v2i1.1302.

Yamakoshi, S., Nakamura, T., Mori, N., Suda, C., Kohzuki, M. & Ito, O. (2021). Effects of exercise training on renal interstitial fibrosis and renin-angiotensin system in rats with chronic renal failure. Journal of hypertension, 39(1), 143–152. https://doi.org/10.1097/hjh.0000000000002605.

Yousefi, A., Etemad, Z., Saed, L., Aliakbar, A., & Soleimany, F. (2022). Response of Growth Hormones and Cortisol to One Session of Moderate-Intensity Endurance Exercise in Patients with Type 2 Diabetes: A Quasi-experimental Study. Medical journal of the Islamic Republic of Iran, 36, 50. https://doi.org/10.47176/mjiri.36.50.

Zhang, DM., Jiao, RQ. & Kong, LD. (2017). High dietary fructose: Direct or indirect dangerous factors disturbing tissue and organ functions. Nutrients, 9(4). https://doi.org/10.3390/nu9040335.

Zhang, G., Byun, HR., Ying, Z., Blencowe, M., Zhao, Y., Hong, J… Yang, X. (2020). Differential metabolic and multi-tissue transcriptomic responses to fructose consumption among genetically diverse mice. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1866(1):165569. https://doi.org/10.1016/j.bbadis.2019.165569.

Zhang, X. & Gao, F. (2021). Exercise improves vascular health: Role of mitochondria. Free radical biology & medicine, 177: 347–359. https://doi.org/10.1016/j.freeradbiomed.2021.11.002.

Descargas

Publicado

2024-01-01

Cómo citar

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). El efecto de la intensidad del ejercicio sobre los parámetros antropométricos y el daño renal en ratones con alto contenido de fructosa (The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice). Retos, 51, 1194–1209. https://doi.org/10.47197/retos.v51.101189

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 > >>