Efecto de las vibraciones de alta intensidad de cuerpo completo sobre la remoción del lactato sanguíneo y la frecuencia cardiaca luego de una prueba máxima en hombres activos jóvenes (Effect of High-Intensity whole body vibration on blood lactate removal

Autores/as

  • Daniel Galaz-Campos IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso
  • Jorge Olivares-Arancibia School of Pedagogy in Physical Education, Faculty of Education, Universidad de las Américas
  • Patricio Solis-Urra PROFITH ‘‘PROmoting FITness and Health through physical activity’’ Research Group, Department of Physical Education and Sports, Faculty of Sport Sciences, Universidad de Granada, Ctra. Alfacar s/n, 18011 Granada, Spain
  • Ernesto Suarez-Cadenas Faculty of Sport Sciences. University Pablo de Olavide, Seville, Spain
  • Alejandro Santos-Lozano Research Institute of Hospital 12 de Octubre (“i+12”), Madrid, Spain i+HeALTH, Department of Health Sciences, Universidad Europea Miguel de Cervantes
  • Fernando Rodríguez-Rodríguez IRyS Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso
  • Carlos Cristi-Montero Grupo IRyS. Escuela de Educación Física. Pontificia Universidad Católica de Valparaíso, Chile.

DOI:

https://doi.org/10.47197/retos.v0i39.78441

Palabras clave:

Vibración de alta frecuencia; recuperación; aclaramiento de lactato; frecuencia cardiaca, (High-frequency vibration; Recovery; lactate clearance; heart rate)

Resumen

Resumen. Acelerar la recuperación es fundamental en las disciplinas deportivas en las que los competidores deben realizar pruebas repetidas dentro de la misma competencia. El objetivo principal de este estudio fue determinar el efecto de la vibración de alta frecuencia de cuerpo completo (WBV) en la extracción de sangre [Lac] y la frecuencia cardíaca (FC) después de una prueba completa. Los participantes realizaron una prueba total de 4 x 100 m cada 48 h de forma aleatoria cruzada, y se aplicó un protocolo de extracción de sangre [Lac] después de cada prueba: a) 20 minutos sentado (REST); b) ponerse en cuclillas sobre una plataforma vibratoria (S+V); y c) ponerse en cuclillas en una plataforma no vibratoria (S-V). La sangre [Lac] y la FC se midieron en reposo, inmediatamente después de la prueba total de 4 x 100 m (min 0), y a los 10 y 20 min durante los protocolos de extracción. Los resultados mostraron que los 3 protocolos mostraron una disminución significativa de la sangre [Lac] después de 20 minutos (REST, S+V y S-V eliminaron Δ 6.6; Δ 10.5; y Δ 11.1 mmol ∙ L-1, respectivamente). Sin embargo, no hubo diferencias significativas en el nivel de eliminación de sangre [Lac] entre las condiciones S+V y S-V. Curiosamente, los participantes S-V mostraron mayores niveles de FC durante la recuperación activa en comparación con las condiciones REST y S+V. El efecto del WBV de alta frecuencia no es un estímulo adicional para aumentar la capacidad de eliminación de sangre [Lac] en hombres jóvenes activos, aunque el WBV parece provocar menos estrés cardiovascular durante la recuperación.

Abstract. Speed up recovery is fundamental in sport disciplines in which competitors must perform repeated trials within the same competition. The main objective of this study was to determine the effect of high-frequency whole body vibration (WBV) on blood [Lac] removal and heart rate (HR) after an all-out test. The participants performed a 4 x 100 m all-out test every 48 h in a random cross-over fashion, and a blood [Lac] removal protocol was applied after each test: a) 20 min seated (REST); b) squatting on a vibrating platform (S+V); and c) squatting on a non-vibrating platform (S-V). Blood [Lac] and HR were measured at rest, immediately after the 4 x 100 m all-out test (min 0), and at 10 and 20 min during the removal protocols. The results showed that the 3 protocols displayed significantly decreased blood [Lac] after 20 min (REST, S+V, and S-V removed Δ 6.6; Δ 10.5; and Δ 11.1 mmol∙L-1, respectively). However, there were no significant differences in the blood [Lac] removal level between the S+V and S-V conditions. Interestingly, the S-V participants showed increased HR levels during the active recovery compared with the REST and S+V conditions. The effect of high-frequency WBV is not an additional stimulus to increase the blood [Lac] removal capacity in active young men, although WBV appeared to elicit less cardiovascular stress during recovery. 

Citas

Aubert, A. E., Seps, B., & Beckers, F. (2003). Heart rate variability in athletes. Sports Medicine, 889–919

Bakhtiary, A. H., Safavi-Farokhi, Z., & Aminian-Far, A. (2007). Influence of vibration on delayed onset of muscle soreness following eccentric exercise. British Journal of Sports Medicine, 41(3), 145-148. https://doi.org/10.1136/bjsm.2006.031278

Barnett, A. (2006). Using Recovery Modalities between Training Sessions in Elite Athletes. Sports Medicine, 36(9), 781-796. https://doi.org/10.2165/00007256-200636090-00005

Beneke, R., & Duvillard, S. P. von. (1996). Determination of maximal lactate steady state response in selected sports events. Medicine & Science in Sports & Exercise, 28(2), 241-246

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine And Science In Sports And Exercise, 14(5), 377-381

Carrasco, L., Sañudo, B., de Hoyo, M., Pradas, F., & Da Silva, M. E. (2011). Effectiveness of low-frequency vibration recovery method on blood lactate removal, muscle contractile properties and on time to exhaustion during cycling at VO2max power output. European Journal of Applied Physiology, 111(9), 2271-2279. https://doi.org/10.1007/s00421-011-1848-9

Cheng, C. F., Hsu, W. C., Lee, C. L., & Chung, P. K. (2010). Effects of the different frequencies of whole-body vibration during the recovery phase after exhaustive exercise. The Journal of Sports Medicine and Physical Fitness, 50(4), 407-415

Cochrane, D J. (2011). Vibration exercise: the potential benefits. International Journal Of Sports Medicine, 32(2), 75-99. https://doi.org/10.1055/s-0030-1268010

Cochrane, D. J. (2012). Is vibration exercise a useful addition to a weight management program? Scandinavian Journal of Medicine & Science in Sports, 22(6), 705-713. https://doi.org/10.1111/j.1600-0838.2011.01411.x

Cochrane, Darryl J, & Hawke, E. J. (2007). Effects of acute upper-body vibration on strength and power variables in climbers. Journal Of Strength And Conditioning Research, 21(2), 527-531

Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159. https://doi.org/10.1037/0033-2909.112.1.155

Coza, A., Nigg, B. M., & Dunn, J. F. (2011). Effects of vibrations on gastrocnemius medialis tissue oxygenation. Medicine and Science in Sports and Exercise, 43(3), 509-515. https://doi.org/10.1249/MSS.0b013e3181f2589f

Cristi-Montero, C., Rodriguez-Rodriguez, F., Mendoza-Muñoz, J., Baronti-Correa, F., Leiva-Olivares, S., Rojas-Hube, M., & Bresciani, G. (2015). Blood lactate removal after a rowing all-out test depends on the active protocol proposed. Science & Sports, 30(5), 283-289. https://doi.org/10.1016/j.scispo.2014.12.003

Dupont, G., Moalla, W., Guinhouya, C., Ahmaidi, S., & Berthoin, S. (2004). Passive versus Active Recovery during High-Intensity Intermittent Exercises: Medicine & Science in Sports & Exercise, 36(2), 302-308. https://doi.org/10.1249/01.MSS.0000113477.11431.59

Edge, J., Mündel, T., Weir, K., & Cochrane, D. J. (2009). The effects of acute whole body vibration as a recovery modality following high-intensity interval training in well-trained, middle-aged runners. European Journal of Applied Physiology, 105(3), 421-428. https://doi.org/10.1007/s00421-008-0919-z

Faude, O., Kindermann, W., & Meyer, T. (2009). Lactate Threshold Concepts. Sports Medicine, 39(6), 469-490. https://doi.org/10.2165/00007256-200939060-00003

Figueroa, A., Gil, R., Wong, A., Hooshmand, S., Park, S. Y., Vicil, F., & Sanchez-Gonzalez, M. A. (2012). Whole-body vibration training reduces arterial stiffness, blood pressure and sympathovagal balance in young overweight/obese women. Hypertension Research, 35(6), 667-672. https://doi.org/10.1038/hr.2012.15

Forsyth, J. J., & Farrally, M. R. (2000). A comparison of lactate concentration in plasma collected from the toe, ear, and fingertip after a simulated rowing exercise. British Journal of Sports Medicine, 34(1), 35-38. https://doi.org/10.1136/bjsm.34.1.35

Green, J. G., & Stannard, S. R. (2010). Active Recovery Strategies and Handgrip Performance in Trained Vs. Untrained Climbers. The Journal of Strength & Conditioning Research, 24(2), 494. https://doi.org/10.1519/JSC.0b013e3181c06af3

Hall, M. M., Rajasekaran, S., Thomsen, T. W., & Peterson, A. R. (2016). Lactate: Friend or Foe. PM&R, 8(3, Supplement), S8-S15. https://doi.org/10.1016/j.pmrj.2015.10.018

Hawkey, A. (2012). Whole body vibration training improves muscular power in a recreationally active population. Sportlogia, 8(2), 116-122. https://doi.org/10.5550/sgia.120802.en.116H

Imai, K., Sato, H., Hori, M., Kusuoka, H., Ozaki, H., Yokoyama, H., Takeda, H., Inoue, M., & Kamada, T. (1994). Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. Journal of the American College of Cardiology, 24(6), 1529-1535. https://doi.org/10.1016/0735-1097(94)90150-3

Javorka, M., Zila, I., Balhárek, T., & Javorka, K. (2002). Heart rate recovery after exercise: relations to heart rate variability and complexity. Brazilian Journal of Medical and Biological Research, 35(8), 991-1000. https://doi.org/10.1590/S0100-879X2002000800018

Jimenez, A., Gonzalez-Gallego, J., de Paz, J. A., Garatachea Vallejo, N., Bresciani, G., & Gonzalez-Gallego, J. (2007). The effects of movement velocity during squatting on energy expenditure and substrate utilization in whole-body vibration. JOURNAL OF STRENGTH AND CONDITIONING RESEARCH, 21(2), 594-598

Kang, S. R., Min, J.-Y., Yu, C., & Kwon, T.-K. (2017). Effect of whole body vibration on lactate level recovery and heart rate recovery in rest after intense exercise. Technology and Health Care, 25(S1), 115-123. https://doi.org/10.3233/THC-171313

Karvonen, M. J., Kentala, E., & Mustala, O. (1957). The effects of training on heart rate; a longitudinal study. Annales Medicinae Experimentalis Et Biologiae Fenniae, 35(3), 307-315.

Kass, L., & Carpenter, R. (2009). The Effect of Sampling Time on Blood Lactate Concentration ([Bla]) in Trained Rowers. International Journal of Sports Physiology and Performance, 4(2), 218-228. https://doi.org/10.1123/ijspp.4.2.218

Kellmann, M., Bertollo, M., Bosquet, L., Brink, M., Coutts, A. J., Duffield, R., Erlacher, D., Halson, S., Hecksteden, A., Heidari, J., Kallus, K., Meeusen, R., Mujika, I., Robazza, C., Skorski, S., Venter, R., & Beckmann, J. (2018). Recovery and Performance in Sport: Consensus Statement. International Journal of Sports Physiology and Performance, 13(2), 240-245. https://doi.org/10.1123/ijspp.2017-0759

Lohman, E. B., 3rd, Petrofsky, J. S., Maloney-Hinds, C., Betts-Schwab, H., & Thorpe, D. (2007). The effect of whole body vibration on lower extremity skin blood flow in normal subjects. Medical Science Monitor: International Medical Journal Of Experimental And Clinical Research, 13(2), CR71-CR76

Marin, P. J., Zarzuela, R., Zarzosa, F., Herrero, A. J., Garatachea, N., Rhea, M. R., & García-López, D. (2012). Whole-body vibration as a method of recovery for soccer players. European Journal of Sport Science, 12(1), 2-8. https://doi.org/10.1080/17461391.2010.536579

McAinch, A. J., Febbraio, M. A., Parkin, J. M., Zhao, S., Tangalakis, K., Stojanovska, L., & Carey, M. F. (2004). Effect of Active versus Passive Recovery on Metabolism and Performance during Subsequent Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 14(2), 185-196. https://doi.org/10.1123/ijsnem.14.2.185

Menzies, P., Menzies, C., McIntyre, L., Paterson, P., Wilson, J., & Kemi, O. J. (2010). Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. Journal of Sports Sciences, 28(9), 975-982. https://doi.org/10.1080/02640414.2010.481721

Messonnier, L. A., Emhoff, C.-A. W., Fattor, J. A., Horning, M. A., Carlson, T. J., & Brooks, G. A. (2013). Lactate kinetics at the lactate threshold in trained and untrained men. Journal of Applied Physiology, 114(11), 1593-1602. https://doi.org/10.1152/japplphysiol.00043.2013

Mester, J., Kleinöder, H., & Yue, Z. (2006). Vibration training: benefits and risks. Journal of Biomechanics, 39(6), 1056-1065. https://doi.org/10.1016/j.jbiomech.2005.02.015

Mika, A., Oleksy, Ł., Kielnar, R., Wodka-Natkaniec, E., Twardowska, M., Kamiński, K., & Małek, Z. (2016). Comparison of Two Different Modes of Active Recovery on Muscles Performance after Fatiguing Exercise in Mountain Canoeist and Football Players. PLOS ONE, 11(10), e0164216. https://doi.org/10.1371/journal.pone.0164216

Milanese, C., Cavedon, V., Sandri, M., Tam, E., Piscitelli, F., Boschi, F., & Zancanaro, C. (2018). Metabolic effect of bodyweight whole-body vibration in a 20-min exercise session: A crossover study using verified vibration stimulus. PLOS ONE, 13(1), e0192046. https://doi.org/10.1371/journal.pone.0192046

Monedero, J., & Donne. (2000). Effect of Recovery Interventions on Lactate Removal and Subsequent Performance. International Journal of Sports Medicine, 21(8), 593-597. https://doi.org/10.1055/s-2000-8488

Mota, M. R., Dantas, R. A. E., Oliveira-Silva, I., Sales, M. M., Sotero, R. da C., Venâncio, P. E. M., Junior, J. T., Chaves, S. N., & de Lima, F. D. (2017). Effect of self-paced active recovery and passive recovery on blood lactate removal following a 200 m freestyle swimming trial. Open Access Journal of Sports Medicine, 8, 155-160. https://doi.org/10.2147/OAJSM.S127948

O’Leary, D. S. (1993). Autonomic mechanisms of muscle metaboreflex control of heart rate. Journal of Applied Physiology, 74(4), 1748-1754. https://doi.org/10.1152/jappl.1993.74.4.1748

Olivares-Arancibia, J., Solis-Urra, P., Rodriguez-Rodriguez, F., Santos-Lozano, A., Sanchez-Martinez, J., Martín-Hernández, J., Zurita-Covalán, N., Sadarangani, K., Cristi-Montero, C. (2018). A single bout of whole-body vibration improves hamstring flexibility in university athletes: A randomized controlled trial. https://doi.org/10.14198/jhse.2018.134.06

Pyne, D. B., Boston, T., Martin, D. T., & Logan, A. (2000). Evaluation of the Lactate Pro blood lactate analyser. European Journal of Applied Physiology, 82(1), 112-116. https://doi.org/10.1007/s004210050659

Rauch, F., Sievanen, H., Boonen, S., Cardinale, M., Degens, H., Felsenberg, D., Roth, J., Schoenau, E., Verschueren, S., & Rittweger, J. (2010). Reporting whole-body vibration intervention studies: Recommendations of the International Society of Musculoskeletal and Neuronal Interactions. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS, 10. Recuperado de https://e-space.mmu.ac.uk/595958/

Robergs, R. A., Ghiasvand, F., & Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 287(3), R502-R516. https://doi.org/10.1152/ajpregu.00114.2004

Ross, A., & Leveritt, M. (2001). Long-Term Metabolic and Skeletal Muscle Adaptations to Short-Sprint Training. Sports Medicine, 31(15), 1063-1082. https://doi.org/10.2165/00007256-200131150-00003

Sañudo, B., César-Castillo, M., Tejero, S., Nunes, N., de Hoyo, M., & Figueroa, A. (2013). Cardiac autonomic response during recovery from a maximal exercise using whole body vibration. Complementary Therapies in Medicine, 21(4), 294-299. https://doi.org/10.1016/j.ctim.2013.05.004

Sañudo, B., César-Castillo, M., Tejero, S., Cordero-Arriaza, F. J., Oliva-Pascual-Vaca, Á., & Figueroa, A. (2016). Effects of Vibration on Leg Blood Flow After Intense Exercise and Its Influence on Subsequent Exercise Performance. The Journal of Strength & Conditioning Research, 30(4), 1111. https://doi.org/10.1519/JSC.0b013e3182a20f2c

Savin, W. M., Davidson, D. M., & Haskell, W. L. (1982). Autonomic contribution to heart rate recovery from exercise in humans. Journal of Applied Physiology, 53(6), 1572-1575. https://doi.org/10.1152/jappl.1982.53.6.1572

Schulz, K. F., Altman, D. G., & Moher, D. (2011). CONSORT 2010 statement: Updated guidelines for reporting parallel group randomised trials. International Journal of Surgery, 9(8), 672-677. https://doi.org/10.1016/j.ijsu.2011.09.004

Spencer, M., Dawson, B., Goodman, C., Dascombe, B., & Bishop, D. (2008). Performance and metabolism in repeated sprint exercise: effect of recovery intensity. European Journal of Applied Physiology, 103(5), 545-552. https://doi.org/10.1007/s00421-008-0749-z

World Medical Association. (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053

Descargas

Publicado

2021-01-01

Cómo citar

Galaz-Campos, D., Olivares-Arancibia, J., Solis-Urra, P., Suarez-Cadenas, E., Santos-Lozano, A., Rodríguez-Rodríguez, F., & Cristi-Montero, C. (2021). Efecto de las vibraciones de alta intensidad de cuerpo completo sobre la remoción del lactato sanguíneo y la frecuencia cardiaca luego de una prueba máxima en hombres activos jóvenes (Effect of High-Intensity whole body vibration on blood lactate removal. Retos, 39, 471–476. https://doi.org/10.47197/retos.v0i39.78441

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 > >>