El entrenamiento de resistencia de intensidad moderada tiene mayores efectos en la supresión de la se-creción de estrés oxidativo que el entrenamiento de fuerza en estudiantes obesos (Moderate-intensity endurance training has higher effects suppression of oxidative stress secretion than strength training in obese students)

Autores/as

  • Gigih Siantoro Universitas Negeri Surabaya
  • Dwi Cahyo Kartiko Department of Physical Education, Health & Recreation, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Muhammad Muhammad Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Yanyong Phanpheng Sports and Exercise Science Program, Faculty of Science and Technology, Loei Rajabhat University https://orcid.org/0000-0002-9290-2479
  • Bayu Agung Pramono Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • I Dewa Made Aryananda Wijaya Kusuma Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya https://orcid.org/0000-0002-4939-7294
  • Yanuar Alfan Triardhana Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Bhekti Lestari Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya
  • Fajar Eka Samudra Department of Sports Coaching Education, Faculty of Sports and Health Science, Universitas Negeri Surabaya https://orcid.org/0009-0009-4159-4048
  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-4080-9245

DOI:

https://doi.org/10.47197/retos.v57.105307

Palabras clave:

Endurance training, MDA levels, obesity, oxidative stress, strength training

Resumen

El objetivo de esta investigación es establecer el impacto del entrenamiento de resistencia de intensidad moderada y ejercicios de resistencia en la mitigación del estrés oxidativo en estudiantes con obesidad. La investigación involucró a una cohorte de 30 estudiantes mujeres, caracterizadas por obesidad, con edad promedio de 22,30±1,92 años y índice de masa corporal (IMC) de 31,77±2,72 kg/m2 en promedio. Estos participantes fueron asignados aleatoriamente en tres grupos distintos: el grupo de control (CN, n=10), el grupo sometido a entrenamiento de resistencia (ET, n=10) y el grupo sometido a entrenamiento de fuerza (ST, n=10). . La intervención que implicó entrenamiento de resistencia se ejecutó a un nivel de intensidad del 60-70% FCmáx, y cada sesión de entrenamiento duró entre 40 y 60 minutos. Mientras que el régimen de entrenamiento de fuerza se implementó con una intensidad de carga de 60-70% 1RM, 4-6 series y 12-15 repeticiones para cada serie. La intervención se administró con una regularidad de tres veces por semana durante cuatro semanas. La recopilación de datos se llevó a cabo tomando muestras de sangre antes y 24 horas después de la última intervención; el análisis de los niveles de MDA utilizando la técnica TBAR sirvió como indicador de estrés oxidativo. La técnica empleada para el análisis de los datos fue la prueba ANOVA, luego se continuó con la prueba post hoc LSD con un nivel significativo (p≤0.05). Los resultados mostraron que los niveles promedio pre-MDA en CN, ET y ST fueron (31,07±5,97, 32,12±8,91 y 31,36±8,52 ng/mL) respectivamente p=0,953. Los niveles medios post-MDA en CN, ET y ST fueron (32,14±11,46, 15,21±8,01 y 22,02±7,33 ng/mL) respectivamente p=0,001. Los niveles medios de delta MDA en CN, ET y ST fueron (1,08±14,83, -16,91±9,68 y -9,34±7,51 ng/mL) respectivamente p=0,005. Los cambios promedio en los niveles de MDA en CN, ET y ST fueron (9,09±48,42, -51,71±24,77 y -27,85±25,31 %) respectivamente p=0,002. Nuestros hallazgos revelaron que tanto las intervenciones de entrenamiento de resistencia como de fuerza dieron como resultado una reducción del estrés oxidativo, como lo demuestra la disminución observada en los niveles de MDA después de las sesiones de entrenamiento. Sin embargo, la intervención de entrenamiento de resistencia tiene un mayor efecto en la supresión de la secreción de estrés oxidativo que el entrenamiento de fuerza en estudiantes obesos.

Palabras clave: Entrenamiento de resistencia, niveles de MDA, obesidad, estrés oxidativo, entrenamiento de fuerza.

Abstract. The objective of this research is to establish the impact of endurance training of moderate intensity and resistance exercises on the mitigation of oxidative stress in students with obesity. The research engaged a cohort of 30 female students, characterized by obesity, with an age average of 22.30±1.92 years and a Body Mass Index (BMI) averaging 31.77±2.72 kg/m2. These participants were randomly allocated into three distinct groups: the control group (CN, n=10), the group undergoing endurance training (ET, n=10), and the group subjected to strength training (ST, n=10). The intervention involving endurance training was executed at an intensity level of 60-70% HRmax, with each training session lasting between 40 to 60 minutes. Whereas, the strength training regimen was implemented with a load intensity of 60-70% 1RM, 4-6 sets, and 12-15 repetitions for each set. The intervention was administered with a regularity of three times per week for four weeks. Data collection was carried out by taking blood samples before and 24 hours after the last intervention—analysis of MDA levels utilizing the TBARs technique served as an indicator of oxidative stress. The technique employed for data analysis was the ANOVA test, then continued with the LSD post hoc test with a significant level (p≤0.05). The results showed that the average pre-MDA levels in CN, ET, and ST were (31.07±5.97, 32.12±8.91, and 31.36±8.52 ng/mL) respectively p=0.953. The mean post-MDA levels in CN, ET, and ST were (32.14±11.46, 15.21±8.01, and 22.02±7.33 ng/mL) respectively p=0.001. The mean delta MDA levels in CN, ET, and ST were (1.08±14.83, -16.91±9.68, and -9.34±7.51 ng/mL) respectively p=0.005. The average changes in MDA levels in CN, ET, and ST were (9.09±48.42, -51.71±24.77, and - 27.85±25.31 %) respectively p=0.002. Our findings revealed that both the endurance and strength training interventions resulted in a reduction of oxidative stress, as evidenced by the observed decrease in MDA levels following the training sessions. However, endurance training intervention has a higher effect on suppressing the secretion of oxidative stress than strength training in obese students.

Keywords: Endurance training, MDA levels, obesity, oxidative stress, strength training

Citas

Accattato, F., Greco, M., Pullano, S. A., Carè, I., Fiorillo, A. S., Pujia, A., Montalcini, T., Foti, D. P., Brunetti, A., & Gullet-ta, E. (2017). Effects of acute physical exercise on oxidative stress and inflammatory status in young, sedentary obese subjects. PloS one, 12(6), e0178900. https://doi.org/10.1371/journal.pone.0178900.

Almuraikhy, S., Doudin, A., Domling, A., Althani, A. A. J. F., & Elrayess, M. A. (2024). Molecular regulators of exercise-mediated insulin sensitivity in non-obese individuals. Journal of cellular and molecular medicine, 28(1), e18015. https://doi.org/10.1111/jcmm.18015.

Bacanoiu, M. V., Danoiu, M., Rusu, L., & Marin, M. I. (2023). New Directions to Approach Oxidative Stress Related to Physical Activity and Nutraceuticals in Normal Aging and Neurodegenerative Aging. Antioxidants (Basel, Switzerland), 12(5), 1008. https://doi.org/10.3390/antiox12051008.

Benito, P. J., Alvarez-Sánchez, M., Díaz, V., Morencos, E., Peinado, A. B., Cupeiro, R., Maffulli, N., & PRONAF Study Group (2016). Cardiovascular Fitness and Energy Expenditure Response during a Combined Aerobic and Circuit Weight Training Protocol. PloS one, 11(11), e0164349. https://doi.org/10.1371/journal.pone.0164349.

Bhutia, Y., Ghosh, A., Sherpa, M. L., Pal, R., & Mohanta, P. K. (2011). Serum malondialdehyde level: Surrogate stress marker in the Sikkimese diabetics. Journal of natural science, biology, and medicine, 2(1), 107–112. https://doi.org/10.4103/0976-9668.82309.

Bouviere, J., Fortunato, R. S., Dupuy, C., Werneck-de-Castro, J. P., Carvalho, D. P., & Louzada, R. A. (2021). Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants (Basel, Switzerland), 10(4), 537. https://doi.org/10.3390/antiox10040537.

Čolak, E., & Pap, D. (2021). The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. Journal of Medical Biochemistry, 40(1), 1–9. https://doi.org/10.5937/jomb0-24652.

Calder, P. C., Ahluwalia, N., Brouns, F., Buetler, T., Clement, K., Cunningham, K., Esposito, K., Jönsson, L. S., Kolb, H., Lansink, M., Marcos, A., Margioris, A., Matusheski, N., Nordmann, H., O’Brien, J., Pugliese, G., Rizkalla, S., Schalk-wijk, C., Tuomilehto, J., & Wärnberg, J. (2011). Dietary factors and low-grade inflammation in relation to overweight and obesity. British Journal of Nutrition, 106(S3), S5–S78. https://doi.org/10.1017/s0007114511005460.

Colombo, G., Reggiani, F., Angelini, C., Finazzi, S., Astori, E., Garavaglia, M. L., Landoni, L., Portinaro, N. M., Giustarini, D., Rossi, R., Santucci, A., Milzani, A., Badalamenti, S., & Dalle-Donne, I. (2020). Plasma Protein Carbonyls as Bi-omarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. Oxidative Medicine and Cellular Longevity, 2020, 1–20. https://doi.org/10.1155/2020/2975256.

Chatgilialoglu C. (2024). Biomarkers of Oxidative and Radical Stress. Biomolecules, 14(2), 194. https://doi.org/10.3390/biom14020194.

Cordiano, R., Di Gioacchino, M., Mangifesta, R., Panzera, C., Gangemi, S., & Minciullo, P. L. (2023). Malondialdehyde as a Potential Oxidative Stress Marker for Allergy-Oriented Diseases: An Update. Molecules (Basel, Switzerland), 28(16), 5979. https://doi.org/10.3390/molecules28165979.

D'Aiuto, N., Hochmann, J., Millán, M., Di Paolo, A., Bologna-Molina, R., Sotelo Silveira, J., & Arocena, M. (2022). Hy-poxia, acidification and oxidative stress in cells cultured at large distances from an oxygen source. Scientific reports, 12(1), 21699. https://doi.org/10.1038/s41598-022-26205-y.

Diaba-Nuhoho, P., Ofori, E. K., Asare-Anane, H., Oppong, S. Y., Boamah, I., & Blackhurst, D. (2018). Impact of exercise intensity on oxidative stress and selected metabolic markers in young adults in Ghana. BMC research notes, 11(1), 634. https://doi.org/10.1186/s13104-018-3758-y.

Gutiérrez-López, L., Olivares-Corichi, I. M., Martínez-Arellanes, L. Y., Mejía-Muñoz, E., Polanco-Fierro, J. A., & García-Sánchez, J. R. (2021). A moderate intensity exercise program improves physical function and oxidative damage in old-er women with and without sarcopenic obesity. Experimental gerontology, 150, 111360. https://doi.org/10.1016/j.exger.2021.111360.

Hagberg, C. E., & Spalding, K. L. (2024). White adipocyte dysfunction and obesity-associated pathologies in hu-mans. Nature Reviews Molecular Cell Biology, 25(4), 270–289. https://doi.org/10.1038/s41580-023-00680-1.

Husain, S., Hillmann, K., Hengst, K., & Englert, H. (2023). Effects of a lifestyle intervention on the biomarkers of oxida-tive stress in non-communicable diseases: A systematic review. Frontiers in Aging, 4. https://doi.org/10.3389/fragi.2023.1085511.

Jiang, S., Liu, H., & Li, C. (2021). Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods (Basel, Switzerland), 10(8), 1854. https://doi.org/10.3390/foods10081854.

Jiang, J., Ni, L., Zhang, X., Gokulnath, P., Vulugundam, G., Li, G., Wang, H., & Xiao, J. (2023). Moderate-Intensity Exer-cise Maintains Redox Homeostasis for Cardiovascular Health. Advanced biology, 7(4), e2200204. https://doi.org/10.1002/adbi.202200204.

Kawai, T., Autieri, M. V., & Scalia, R. (2021). Adipose tissue inflammation and metabolic dysfunction in obesity. American Journal of Physiology-Cell Physiology, 320(3), C375–C391. https://doi.org/10.1152/ajpcell.00379.2020.

Kościuszko, M., Buczyńska, A., Katarzyna Łuka, Duraj, E., Katarzyna Żuk-Czerniawska, Agnieszka Adamska, Katarzyna Siewko, Wiatr, A., Adam Jacek Krętowski, & Popławska-Kita, A. (2024). Assessing the impact of body composition, metabolic and oxidative stress parameters on insulin resistance as a prognostic marker for reactive hypoglycemia: a cross-sectional study in overweight, obese, and normal weight individuals. Frontiers in Pharmacology, 15. https://doi.org/10.3389/fphar.2024.1329802.

Li, C., Feng, F., Xiong, X., Li, R., & Chen, N. (2017). Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity. Journal of Sports Sciences, 35(7), 663–668. https://doi.org/10.1080/02640414.2016.1183807.

Lu, Z., Xu, Y., Song, Y., Bíró, I., & Gu, Y. (2021a). A Mixed Comparisons of Different Intensities and Types of Physical Exercise in Patients With Diseases Related to Oxidative Stress: A Systematic Review and Network Meta-Analysis. Frontiers in physiology, 12, 700055. https://doi.org/10.3389/fphys.2021.700055.

Lu, Y., Wiltshire, H. D., Baker, J. S., & Wang, Q. (2021b). Effects of High Intensity Exercise on Oxidative Stress and Anti-oxidant Status in Untrained Humans: A Systematic Review. Biology, 10(12), 1272. https://doi.org/10.3390/biology10121272.

Manna, P., & Jain, S. K. (2015). Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metabolic syndrome and related disorders, 13(10), 423–444. https://doi.org/10.1089/met.2015.0095.

Marseglia, L., Manti, S., D'Angelo, G., Nicotera, A., Parisi, E., Di Rosa, G., Gitto, E., & Arrigo, T. (2014). Oxidative stress in obesity: a critical component in human diseases. International journal of molecular sciences, 16(1), 378–400. https://doi.org/10.3390/ijms16010378.

Martínez-Martínez, E., & Cachofeiro, V. (2022). Oxidative Stress in Obesity. Antioxidants (Basel, Switzerland), 11(4), 639. https://doi.org/10.3390/antiox11040639.

Messineo, S., Laria, A. E., Arcidiacono, B., Chiefari, E., Luque Huertas, R. M., Foti, D. P., & Brunetti, A. (2016). Cooper-ation between HMGA1 and HIF-1 Contributes to Hypoxia-Induced VEGF and Visfatin Gene Expression in 3T3-L1 Adipocytes. Frontiers in endocrinology, 7, 73. https://doi.org/10.3389/fendo.2016.00073.

Palma, G., Sorice, G. P., Genchi, V. A., Giordano, F., Caccioppoli, C., D'Oria, R., Marrano, N., Biondi, G., Giorgino, F., & Perrini, S. (2022). Adipose Tissue Inflammation and Pulmonary Dysfunction in Obesity. International journal of molecu-lar sciences, 23(13), 7349. https://doi.org/10.3390/ijms23137349.

Park, S.Y. and Kwak, Y.S. (2016). Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. Journal of Exercise Rehabilitation, 12(2), 113–118. http://dx.doi.org/10.12965/jer.1632598.299.

Powers, S. K., Goldstein, E., Schrager, M., & Ji, L. L. (2022). Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants (Basel, Switzerland), 12(1), 39. https://doi.org/10.3390/antiox12010039.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., & Yamaoka, Y. (2023). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.

Roh, H. T., Cho, S. Y., & So, W. Y. (2017). Obesity promotes oxidative stress and exacerbates blood-brain barrier disrup-tion after high-intensity exercise. Journal of sport and health science, 6(2), 225–230. https://doi.org/10.1016/j.jshs.2016.06.005.

Roh, H. T., Cho, S. Y., & So, W. Y. (2020). Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. International journal of environmental research and public health, 17(7), 2505. https://doi.org/10.3390/ijerph17072505.

Savini, I., Catani, M. V., Evangelista, D., Gasperi, V., & Avigliano, L. (2013). Obesity-associated oxidative stress: strategies finalized to improve redox state. International journal of molecular sciences, 14(5), 10497–10538. https://doi.org/10.3390/ijms140510497.

Sies, H., Berndt, C., & Jones, D. P. (2017). Oxidative Stress. Annual review of biochemistry, 86, 715–748. https://doi.org/10.1146/annurev-biochem-061516-045037.

Tan, B. L., & Norhaizan, M. E. (2019). Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients, 11(11), 2579. https://doi.org/10.3390/nu11112579.

Thirupathi, A., Wang, M., Lin, J. K., Fekete, G., István, B., Baker, J. S., & Gu, Y. (2021). Effect of Different Exercise Mo-dalities on Oxidative Stress: A Systematic Review. BioMed research international, 2021, 1947928. https://doi.org/10.1155/2021/1947928.

Thomas, D. T., DelCimmuto, N. R., Flack, K. D., Stec, D. E., & Hinds, T. D., Jr (2022). Reactive Oxygen Species (ROS) and Antioxidants as Immunomodulators in Exercise: Implications for Heme Oxygenase and Bilirubin. Antioxidants (Ba-sel, Switzerland), 11(2), 179. https://doi.org/10.3390/antiox11020179.

Vincent, H. K., Bourguignon, C. M., Vincent, K. R., Weltman, A. L., Bryant, M., & Taylor, A. G. (2006). Antioxidant sup-plementation lowers exercise-induced oxidative stress in young obese adults. Obesity (Silver Spring, Md.), 14(12), 2224–2235. https://doi.org/10.1038/oby.2006.261.

Wang, Y., Luo, D., Jiang, H., Song, Y., Wang, Z., Shao, L., & Liu, Y. (2023). Effects of physical exercise on biomarkers of oxidative stress in healthy subjects: A meta-analysis of randomized controlled trials. Open life sciences, 18(1), 20220668. https://doi.org/10.1515/biol-2022-0668.

Wen, X., Zhang, B., Wu, B., Xiao, H., Li, Z., Li, R., Xu, X., & Li, T. (2022). Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal transduction and targeted therapy, 7(1), 298. https://doi.org/10.1038/s41392-022-01149-x.

Yosika, G.F., Sukoco, P., Pranoto, A., & Purwoto, S. P. (2020). Serum malondialdehyde decreases after moderate interval and continuous morning exercise in obese females. Jurnal SPORTIF : Jurnal Penelitian Pembelajaran, 6(2), 288-303. https://doi.org/10.29407/js_unpgri.vi.14289.

Zare, M., Niloofar Shoaei, Karimian, J., Nouri, M., Zare, S., Kimia Leilami, Zainab Shateri, Parvin Sarbakhsh, Moham-mad Hasan Eftekhari, & Bahram Pourghassem Gargari. (2024). Effect of a plant-based diet on oxidative stress bi-omarkers in male footballers. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54198-3.

Zatterale, F., Longo, M., Naderi, J., Raciti, G. A., Desiderio, A., Miele, C., & Beguinot, F. (2020). Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.01607.

Descargas

Publicado

2024-06-11

Cómo citar

Siantoro, G., Kartiko, D. C., Muhammad, M., Phanpheng, Y., Pramono, B. A., Kusuma, I. D. M. A. W., Triardhana, Y. A., Lestari, B., Samudra, F. E., & Pranoto, A. (2024). El entrenamiento de resistencia de intensidad moderada tiene mayores efectos en la supresión de la se-creción de estrés oxidativo que el entrenamiento de fuerza en estudiantes obesos (Moderate-intensity endurance training has higher effects suppression of oxidative stress secretion than strength training in obese students). Retos, 57, 291–297. https://doi.org/10.47197/retos.v57.105307

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 > >>