Resumen
Los LMS han supuesto un fuerte impulso tanto a la enseñanza en línea como a la enseñanza semipresencial. El presente estudio busca determinar qué factores influyen sobre la satisfacción de los profesores que desarrollan su labor en entornos semipresenciales con la plataforma CISCO NetScape. El estudio se realizó tomando como marco de referencia el Modelo de Aceptación Tecnológica (TAM) y utilizando como técnica estadística la regresión por mínimos cuadrados parciales (Partial Least Squares, PLS). Participaron 115 profesores de las Academias de CISCO de 18 países de Latinoamérica. En primer lugar se evaluó el modelo de medida aplicado, mostrando que tanto su fiabilidad así como la validez convergente y discriminante eran adecuadas. En segundo lugar se realizó la evaluación del modelo predictivo, con la intención de valorar el valor predictivo de las relaciones entre los constructos que componen el modelo. Los resultados revelaron que el modelo explica menos del 2% del Uso (U) y sin embargo el 36% de la Intención de Uso (IU) de la plataforma por parte de los profesores. Así mismo, la Intención de Uso (IU) está positivamente afectada por la Utilidad Percibida. Por el contrario, el efecto de la Facilidad de Uso Percibida (FUP) sobre la Intención de Uso (IU) no es significativo, sin embargo, el efecto indirecto de este factor sobre la Intención de Uso (IU) a través de la Utilidad Percibida es importante.Citas
Abella, V., López, C., Ortega, N., Sánchez, P., & Lezcano, F. (2011). Implantación de UBUVirtual en la Universidad de Burgos: evaluación y expectativas de uso. EDUTEC: Revista Electrónica de Tecnología Educativa, 38. Recuperado de: http://edutec.rediris.es/Revelec2/Revelec38/implantacion_ubuvirtual_universidad_burgos.html
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. doi:10.1016/0749-5978(91)90020-T
Al-Azawei, A., Parslow, P., & Lundqvist, K. (2017). Investigating the effect of learning styles in a blended e-learning system: An extension of the technology acceptance model (TAM). Australasian Journal of Educational Technology, 33(2), 1-23. doi:10.14742/ajet.2741
Alharbi, S., & Drew, S. (2014). Using the Technology Acceptance Model in understanding academics’ behavioural intention to use Learning Management Systems. International Journal of Advanced Computer Science and Applications, 5(1), 143-155. doi:10.14569/IJACSA.2014.050120#sthash.5OCEPrDy.dpuf
Asiri, M. S., Mahmud, R., Abu-Bakar, K., & Ayub, A. F. (2012). Factors influencing the use of learning management system in Saudi Arabian Higher Education: A theoretical framework. Higher Education Studies, 2, 125-137. doi:10.5539/hes.v2n2p125
Barclay, D., Higgins, C., & Thompson, R. L. (1995). The partial least squares (PLS) approach to causal modeling: personal computer adoption and uses an illustration. Technology Studies, 2(2), 285-309.
Barroso, M. C., Cepeda, A., & Roldán, J. L. (2007). Investigar en economía de la empresa: ¿Partial Least Squares o modelos basados en la covarianza? Comunicación presentada en el XIX Congreso anual y XV Congreso Hispano Francés de AEDEM, Vitoria. Recuperado de: https://dialnet.unirioja.es/descarga/articulo/2480048.pdf
Bartolomé, A. (2004). La red como instrumento de formación. Blended Learning. Conceptos básicos. Pixel-Bit. Revista de Medios y Educación, 23, 7-20. Recuperado de: http://acdc.sav.us.es/ojs/index.php/pixelbit/article/view/828/761
Bartolomé, A. (2008). Entornos de aprendizaje mixto en Educación Superior. RIED-Revista Iberoamericana de Educación a Distancia, 11(1), 15-51. doi:10.5944/ried.1.11.955
Benson, V., Anderson, D., & Ooms, A. (2011). Educators’ perceptions, attitudes and practices: blended learning in business and management education. Research in Learning Technology, 19(2), 143-154. doi:10.1080/21567069.2011.586676.
Bollen, K. (1989). Structural equations with latent variables. New York: Wiley.
Buchanan, T., Sainter, P., & Saunders, G. (2013). Factors affecting faculty use of learning technologies: implications for models of technology adoption. Journal of Computing in Higher Education, 25, 1–11. doi:10.1007/s12528-013-9066-6
Cepeda, G., & Roldán, J. L. (2004). Aplicando en la práctica la técnica PLS en la Administración de Empresas. Comunicación presentada en el XIV Congreso Nacional ACEDE, Murcia. Recuperado de: https://personal.us.es/jlroldan/Sitio_web/Partial_Least_Squares_(PLS)_files/Cepeda,%20Roldan%20%282004%29%20ACEDE.pdf
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295-336). Mahwah: Lawrence Erlbaum Associates.
Cuesta, I. I., Abella, V., Alegre, J. M. (2014). Evaluación del módulo de cuestionarios del entorno de trabajo UBUVirtual mediante el Modelo de Aceptación Tecnológica. Profesorado. Revista de Currículum y Formación del Profesorado, 18(1), 431-445.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. (Tesis Doctoral). Sloan School of Management, Massachusetts.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. doi:10.2307/249008
Davis, F. D., Bagozzi, R. P., & Warshaw, P .R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982
De Marchis, G. P. (2012). La validez externa de las encuestas en la web. Amenazas y su control. Estudios sobre el Mensaje Periodístico, 18, 263-272. doi:10.5209/rev_ESMP.2012.v18.40980
Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: An alternative to scale development. Journal of Marketing Research, 38(2), 269-277.
Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Akron, Ohio: The University of Akron.
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley Publishing Company.
Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. doi:10.2307/3151312
George-Palilonis, F., & Filak, V. (2009). Blended Learning in the visual communications classroom. Student reflections on a multimedia course. Electronic Journal of e-Learning,7(3).
Graham, C. R. (2006). Blended learning systems. Definition, current trends, and future directions. En C. J. Bonk and C. R. Graham (Eds.), The handbook of blended learning. Global perspectives, local designs. San Francisco: Pfeiffer.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate Data Analysis. New Jersey: Prentice Hall.
Hussein, Z. (2017). Leading to intention: The role of attitude in relation to Technology Acceptance Model in e-learning. Procedia Computer Science, 105, 159-164. doi:10.1016/j.procs.2017.01.196
Imbernón, F. (Ed.) (2008). Análisis y propuestas de competencias docentes universitarias para el desarrollo del aprendizaje significativo del alumnado a través del e-learning y el b-learning en el marco del EEES. Recuperado de: http.//tecnologiaedu.us.es/nweb/htm/pdf/EA20070049_Dr_Francisco_ Imbernon.pdf.
Karahanna, E. & Straub, D. W. (1999). The psychological origins of perceived usefulness and ease-of-use. Information & Management. 35(4), 237-250. doi:10.1016/S0378-7206(98)00096-2
Khechine, H., Lakhal, S., Pascot, D., & Bytha, A. (2014). UTAUT model for blended learning: the role of gender and age in the intention to use webinars. Interdisciplinary Journal of E-Learning and Learning Objects, 10, 33-52
Lee, Y. C. (2006). An empirical investigation into factors influencing the adoption of e-learning system. Online Information Review, 30(5), 517-541. doi:10.1108/14684520610706406
Lee, M. K. O., Cheung, C. M. K., & Chen, Z. (2005). Acceptance of internet based learning medium: The role of extrinsic and intrinsic motivation. Information & Management, 42(8), 1095-1104. doi:10.1016/j.im.2003.10.007
Lin, W., & Wang, Ch. (2012). Antecedences to continued intentions of adopting e-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. Computers & Education, 58(1), 88-99. doi: 10.1016/j.compedu.2011.07.008
Marakarkandy, B., Nilay, Y., & Dasgupta, C. (2017). Enabling internet banking adoption: An empirical examination with an augmented Technology Acceptance Model (TAM). Journal of Enterprise Information Management, 30(2), 263-294. doi:10.1108/JEIM-10-2015-0094
Martin García, A. V., García del Dujo, Á., Muñoz Rodríguez, J. M. (2014). Factores determinantes de adopción de blended learning en educación superior. Adaptación del modelo UTAUT. Educación XX1, 17(2), 217-240. doi:10.5944/educxx1.17.2.11489
Morán, L. (2012). Blended-learning. Desafío y oportunidad para la educación actual. EDUTEC, Revista Electrónica de Tecnología Educativa, 39. Recuperado de: www.edutec.es/revista/index.php/edutec-e/article/download/371/108
Motaghian, H., Hassanzadeh, A., & Moghadam, D. K. (2013). Factors affecting university instructors' adoption of web-based learning systems: case study of Iran. Computers & Education, 61, 158-167. doi:10.1016/j.compedu.2012.09.016
Nunnally, J. (1978). Psychometric Theory. New York: McGraw-Hill.
Owston, R., York, D., & Murtha, S. (2013). Student perceptions and achievement in a university blended learning strategic initiative. Internet and Higher Education, 18, 38-46. doi:10.1016/j.iheduc.2012.12.003
Padilla-Meléndez, A., del Aguila-Obra, A. R., & Garrido-Moreno, A. (2013). Perceived playfulness, gender differences and technology acceptance model in a blended learning scenario. Computers & Education, 63, 306-317. doi:10.1016/j.compedu.2012.12.014
Roby, T., Ashe, S., Singh, N., Clark, C. (2013). Shaping the online experience: How administrators can influence student and instructor perceptions through policy and practice. The Internet and Higher Education, 17, 29–37. doi:10.1016/j.iheduc.2012.09.004
Schoonenboom, J. (2014). Using an adapted, task-level technology acceptance model to explain why instructors in higher education intend to use some learning management system tools more than others. Computers & Education, 71, 247-256. doi:10.1016/j.compedu.2013.09.016
S. Taylor, S. & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19, 561-570. doi:10.2307/249633
Tran, K. N. N. (2016). The adoption of blended e-learning technology in Vietnam using a revision of the Technology Acceptance Model. Journal of Information Technology Education: Research, 15, 253-282.
Torrisi-Steele, G., & Drew, S. (2013). The literature landscape of blended learning in higher education: the need for better understanding of academic blended practice. International Journal for Academic Development, 18(4), 1–13. doi:10.1080/1360144X.2013.786720
Tselios, N., Daskalakis, S., & Papadopoulou, M. (2011). Assessing the acceptance of a blended learning university course. Educational Technology & Society, 14(2), 224–235.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. doi:10.1287/mnsc.46.2.186.11926
Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. doi:10.1111/j.1540-5915.2008.00192.x
Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232. doi:10.1016/j.chb.2016.10.028