Mejorar el comportamiento de los peatones mediante la realidad virtual: un estudio empírico

Contenido principal del artículo

Alicia López-Álvarez
Luca Piovano
Francisco Luque
Carlos De Aldama

Resumen

INTRODUCCIÓN: En los últimos años ha aumentado el número de peatones fallecidos en las vías urbanas, debido en gran medida a infracciones asociadas a sus comportamientos (por ejemplo, cruzar cuando el semáforo está en rojo). Se argumenta que estos comportamientos reflejan una falta de percepción del riesgo. Los programas de seguridad vial han tratado de concienciar a través de diversos métodos, utilizando muy a menudo experiencias emocionales impactantes (por ejemplo, testimonios de personas que han sufrido ellas mismas un accidente). Recientemente, la Realidad Virtual (RV) se ha desplegado con el objetivo de aumentar la eficacia de estos programas de seguridad. Estudios anteriores han demostrado el potencial de la RV para mejorar la seguridad de los peatones, especialmente cuando va acompañada de un debriefing y una reflexión crítica. MÉTODO: Un total de 43 participantes (M = 24,5 años; SD = 5,14; 65,12% mujeres) participaron en un estudio experimental con un diseño factorial 2x2 y medidas pre-post. Se les asignó aleatoriamente a uno de cuatro grupos (Experimentar un accidente en RV/Experimentar RV sin accidente; tener un debriefing tras la experiencia de RV/no tener un debriefing tras la experiencia de RV). Las medidas pre-post fueron de dos tipos, (a) medidas de autoinforme y (b) medidas de comportamiento en RV. Para analizar los datos se utilizaron análisis multivariantes de la varianza (MANOVA) y modelos lineales generales mixtos (GLMM). RESULTADOS Y DISCUSIÓN: Los principales resultados revelaron que (a) los participantes informaron de una reducción general en el número de infracciones de las normas, independientemente de la condición, y (b) hubo una reducción significativa en el número de infracciones cometidas en RV (es decir, cruzar cuando el semáforo está en rojo) en la condición en la que los participantes habían experimentado previamente un accidente. Estos resultados respaldan el potencial del uso de entornos de RV para mejorar el comportamiento relacionado con la seguridad de los peatones. Se delinean las implicaciones para futuras investigaciones.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
López-Álvarez, A., Piovano, L., Luque, F., & De Aldama, C. (2024). Mejorar el comportamiento de los peatones mediante la realidad virtual: un estudio empírico. Bordón. Revista De Pedagogía, 76(3), 99–123. https://doi.org/10.13042/Bordon.2024.100116
Sección
Artículos
Biografía del autor/a

Alicia López-Álvarez, Universidad Complutense de Madrid (España)

Master’s degree student in Educational Research master from the Complutense University of Madrid. She graduated in Early Childhood Education and Primary Education with a major in English. Her research has focused on the use of VR as an educational tool and its relation to road safety and pedestrian behavior.

Luca Piovano, Universidad Politécnica de Madrid (España)

PhD in Computer Science by the University of Turin (Italy). He is currently the scientifical director of the Virtual Reality and Data Visualization Department at the Centre for Energy Efficiency (CEDINT) of Polytechnic University of Madrid, where he has been working since 2012. He has participated in several R&D projects, funded at both national and European level, applying Virtual/Augmented Reality and Visual Analysis techniques, among the others, to: develop digital twins of buildings for monitoring their energy consumption; support new therapeutic strategies for the treatment of alcohol use disorders; simulate possible collisions between Vulnerable Road Users and vehicles in urban traffic scenarios; and prepare educational tools to learn about raw materials and their widespread usage in current society.

Francisco Luque, Universidad Politécnica de Madrid (España)

Telecommunications engineer with a master’s degree in Software and Communications Systems. He has worked as a technical researcher in the Virtual Reality and Data Visualization department in the Centre for Energy Efficiency (CEDINT-UPM) since his graduation in 2008. In this period, he has participated in numerous national and European projects where, being the main technical responsible of the group, he has gained great experience concerning 3D graphic engines, virtual reality systems, 3D modeling and texturing and code programming for the implementation of immersive experiences in the area of Virtual and Augmented Reality. Other skills include analysis and visualization of spatial temporal complex data using web based tools.

Carlos De Aldama, Universidad Complutense de Madrid (España)

PhD in Educational Psychology at Autonomous University of Madrid. He is Assistant Professor at the department of Research and Psychology in Education, Faculty of Education, Complutense University of Madrid. His interests are mainly focused on how digital technologies are reshaping the different dimensions of human nature and society. In particular, he has largely researched how to integrate them in educational settings to enhance meaningful learning and how this is linked with higher mental processes, such as reasoning and thought.

Métrica

Citas

Aguilar-Reyes, C., Wozniak, D., Ham, A. & Zahabi, M. (2022). An adaptive virtual realitybased training system for pilots. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (vol. 66, n.º 1, pp. 1962-1966)., CA: SAGE Publications. https://doi.org/10.1177/1071181322661063

Assailly, J. P. (2017). Road safety education: What works? Patient education and counseling, 100, S24-S29. https://doi.org/10.1016/j.pec.2015.10.017

Baeza González, A., Usart Rodríguez, M. & Marqués Molías, L. (2023). Un análisis de las simulaciones virtuales desde la óptica del modelo TPACK. Bordón. Revista de Pedagogía, 75(4), 109-133. https://doi.org/10.13042/Bordon.2023.97585

Çakiroğlu, Ü., & Gökoğlu, S. (2019). Development of fire safety behavioral skills via virtual reality. Computers & Education, 133, 56-68. https://doi.org/10.1016/j.compedu.2019.01.014

Cook, D. A., Stanley, J. H., Brydges, R., Zendejas B, Szostek, J. H., Wang, T., Erwin, P. J. & Hatala, R. (2013). Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher, 35(1), e867-e898. https://doi.org/10.3109/0142159X.2012.714886

Deb, S., Carruth, D. W., Sween, R., Strawderman, L. & Garrison, T. M. (2017a). Efficacy of virtual reality in pedestrian safety research. Applied Ergonomics, 65, 449-460. https://doi.org/10.1016/j.apergo.2017.03.007

Deb, S., Strawderman, L., DuBien, J., Smith, B., Carruth, D. W. & Garrison, T. M. (2017b). Evaluating pedestrian behavior at crosswalks: Validation of a pedestrian behavior questionnaire for the US population. Accident Analysis & Prevention, 106, 191-201. https://doi.org/10.1016/j.aap.2017.05.020

Delgado, A. (2021). Campañas: ¿la clave? Repetir. Revista DGT. https://revista.dgt.es/es/reportajes/2021/09SEPTIEMBRE/0923-Campanas-publicidad.shtml

Feng, Q., Luo, H., Li, W., Chen, Y.,& Zhang, J. (2021). The moderating effect of debriefing on learning outcomes of IVR-based instruction: an experimental research. Applied Sciences, 11(21), 10426. https://doi.org/10.3390/app112110426

Ferguson, C., Van den Broek, E. L. & Van Oostendorp, H. (2020). On the role of interaction mode and story structure in virtual reality serious games. Computers & Education, 143, 103671. https://doi.org/10.1016/j.compedu.2019.103671

Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.) Sage publications Ltd. Gallucci, M. (2019). GAMLj: General analyses for linear models. [Jamovi module]. https://gamlj.github.io/

Gardner, R. (2013). Introduction to debriefing. In Seminars in perinatology, vol. 37, n.o 3, 166- 174. WB Saunders. https://doi.org/10.1053/j.semperi.2013.02.008

Gicquel, L., Ordonneau, P., Blot, E., Toillon, C., Ingrand, P. & Romo, L. (2017). Description of various factors contributing to traffic accidents in youth and measures proposed to alleviate recurrence. Frontiers in psychiatry, 8, 94. https://doi.org/10.3389/fpsyt.2017.00094

Granié, M. A., Pannetier, M. & Gueho, L. (2013). Developing a self-reporting method to measure pedestrian behaviors at all ages. Accident Analysis & Prevention, 50, 830-839. https://doi.org/10.1016/j.aap.2012.07.009

Hou, M., Chen, S. & Cheng, J. (2022). The effect of risk perception and other psychological factors on mobile phone use while crossing the street among pedestrians. Accident Analysis & Prevention, 170. https://doi.org/10.1016/j.aap.2022.106643 IBM Corp. Released 2020. IBM SPSS Statistics for Mac, Version 27.0. Armonk, NY: IBM Corp.

Lee, J., Lee, H., Kim, S., Choi, M., Ko, I. S., Bae, J. & Kim, S. H. (2020). Debriefing methods and learning outcomes in simulation nursing education: a systematic review and meta-analysis. Nurse Education Today, 87. https://doi.org./10.1016/j.nedt.2020.104345

León, O. G. & Montero, I. (2015). Métodos de investigación en psicología y educación: las tradiciones cuantitativa y cualitativa (4.ª). McGraw-Hill.

Levett-Jones, T. & Lapkin, S. (2014). A systematic review of the effectiveness of simulation debriefing in health professional education. Nurse Education Today, 34(6), e58-e63. https://doi.org/10.1016/j.nedt.2013.09.020

Luo, H., Yang, T., Kwon, S., Li, G., Zuo, M. & Choi, I. (2021). Performing versus observing: Investigating the effectiveness of group debriefing in a VR-based safety education program. Computers & Education, 175. https://doi.org/10.1016/j.compedu.2021.104316

Marrero Galván, J. J. & Hernández Padrón, M. (2022). La trascendencia de la realidad virtual en la educación STEM: una revisión sistemática desde el punto de vista de la experimentación en el aula. Bordón. Revista de Pedagogía, 74(4), 45-63. https://doi.org/10.13042/Bordon.2022.94179

National Road Safety Observatory (2021). Las primeras cifras de la siniestralidad de los peatones. Dirección General de Tráfico de Madrid, España. National Road Safety Observatory (2023). Siniestralidad mortal en vías interurbanas 2022. Dirección General de Tráfico de Madrid, España.

O’Hern, S., Stephens, A. N., Young, K. & Koppel, S., (2019). Personality traits as predictors of cyclist behavior. In: Paper Presented at the International Cycling Safety Conference – ICSC2019, 18-20 November 2019 (extended Version). Brisbane, Australia. QUT, Brisbane. https://doi.org/10.1016/j.aap.2020.105704

Osorio-García, D., Hernández-Pulgarín, G. & Escobar, D. A. (2023). Profiles of pedestrian risk behavior while crossing the street. Safety Science, 163. https://doi.org/10.1016/j.ssci.2023.106120

Palacios Ortega, A., Pascual López, V. & Moreno Mediavilla, D. (2022). El papel de las nuevas tecnologías en la educación STEM. Bordón. Revista de Pedagogía, 74(4), 11-21. https://doi.org/10.13042/Bordon.2022.96550

Parker, C., Scott, S. & Geddes, A. (2019). Snowball sampling. SAGE research methods foundations. https://doi.org/10.4135/9781526421036831710

Purcell, C. & Romijn, A. (2020). Teaching children road safety using a simulated environment. Journal of Education and Educational Development, 7(1), 44-54. https://doi.org/10.22555/joeed.v7i1.2948

Reason, J., Manstead, A., Stradling, S., Baxter, J. & Campbell, K. (1990). Errors and violations on the roads: a real distinction? Ergonomics, 33(10-11), 1315-1332. https://doi.org/10.1080/00140139008925335

Saadati, M., Razzaghi, A., Rezapour, R. & Pourebrahim, K. (2022). Interventions for safety promotion of pedestrians; A scoping review. Journal of Transport & Health, 24. https://doi.org/10.1016/j.jth.2021.101277

Schneider, S., Maruhn, P., Dang, N. T., Pala, P., Cavallo, V. & Bengler, K. (2022). Pedestrian crossing decisions in virtual environments: behavioral validity in CAVEs and head-mounted displays. Human Factors, 64(7), 1210-1226. https://doi.org/10.1177/0018720820987446

Secretary-General, U. N. (2020). Improving global road safety: note/by the Secretary-General.

Seo, H. J., Park, G. M., Son, M. & Hong, A. J. (2021). Establishment of virtual-reality-based safety education and training system for safety engagement. Education Sciences, 11(12), 786. https://doi.org/10.3390/educsci11120786

Twisk, D. A., Vlakveld, W. P., Commandeur, J. J., Shope, J. T. & Kok, G. (2014). Five road safety education programmes for young adolescent pedestrians and cyclists: A multi-programme evaluation in a field setting. Accident Analysis & Prevention, 66, 55-61. https://doi.org/10.1016/j.aap.2014.01.002

Useche, S. A., Alonso, F. & Montoro, L. (2020). Validation of the walking behavior questionnaire (WBQ): a tool for measuring risky and safe walking under a behavioral perspective. Journal of Transport & Health, 18. https://doi.org/10.1016/j.jth.2020.100899

Useche, S. A., Hezaveh, A. M., Llamazares, F. J. & Cherry, C. (2021). Not gendered… but different from each other? A structural equation model for explaining risky road behaviors of female and male pedestrians. Accident Analysis & Prevention, 150. https://doi.org/10.1016/j.aap.2020.105942

Vankov, D. & Jankovszky, D. (2021). Effects of using headset-delivered virtual reality in road safety research: A systematic review of empirical studies. Virtual Reality & Intelligent Hardware, 3(5), 351-368. https://doi.org/10.1016/j.vrih.2021.05.005

Wang, T., Wu, J., Zheng, P. & McDonald, M. (2010). Study of pedestrians’ gap acceptance behavior when they jaywalk outside crossing facilities. In 13th International IEEE Conference on Intelligent Transportation Systems (pp. 1295-1300). IEEE. https://doi.org/10.1109/ITSC.2010.5625157.

World Health Organization (2018). Global status report on road safety.

Zhou, R. & Horrey, W. J. (2010). Predicting adolescent pedestrians’ behavioral intentions to follow the masses in risky crossing situations. Transportation research part F: traffic psychology and behavior, 13(3), 153-163. https://doi.org/10.1016/j.trf.2009.12.001