Améliorer le comportement des piétons par la réalité virtuelle : une étude empirique.

Contenu principal de l'article

Alicia López-Álvarez
Luca Piovano
Francisco Luque
Carlos De Aldama

Résumé

INTRODUCTION : Au cours des dernières années, le nombre de piétons décédés sur les voies urbaines a augmenté, principalement en raison d'infractions associées à leurs comportements (par exemple, traverser lorsque le feu est rouge). On soutient que ces comportements reflètent un manque de perception du risque. Les programmes de sécurité routière ont tenté de sensibiliser par divers moyens, utilisant souvent des expériences émotionnelles frappantes (par exemple, des témoignages de personnes ayant elles-mêmes été victimes d'un accident). Récemment, la Réalité Virtuelle (RV) a été déployée dans le but d'accroître l'efficacité de ces programmes de sécurité. Des études antérieures ont démontré le potentiel de la RV pour améliorer la sécurité des piétons, notamment lorsqu'elle est accompagnée d'un débriefing et d'une réflexion critique. MÉTHODE : Un total de 43 participants (M = 24,5 ans ; SD = 5,14 ; 65,12 % femmes) ont pris part à une étude expérimentale avec un plan factoriel 2x2 et des mesures pré-post. Ils ont été assignés de manière aléatoire à l'un des quatre groupes (Expérience d'un accident en RV / Expérience de RV sans accident ; avoir un débriefing après l'expérience en RV / ne pas avoir de débriefing après l'expérience en RV). Les mesures pré-post étaient de deux types, (a) des mesures d'auto-déclaration et (b) des mesures de comportement en RV. Pour analyser les données, des analyses de variance multivariées (MANOVA) et des modèles linéaires généraux mixtes (GLMM) ont été utilisés. RÉSULTATS ET DISCUSSION : Les principaux résultats ont révélé que (a) les participants ont signalé une réduction générale du nombre d'infractions aux règles, indépendamment de la condition, et (b) il y a eu une réduction significative du nombre d'infractions commises en RV (c'est-à-dire traverser lorsque le feu est rouge) dans la condition où les participants avaient précédemment vécu un accident. Ces résultats soutiennent le potentiel de l'utilisation des environnements de RV pour améliorer le comportement lié à la sécurité des piétons. Les implications pour de futures recherches sont énoncées.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Renseignements sur l'article

Comment citer
López-Álvarez, A., Piovano, L., Luque, F., & De Aldama, C. (2024). Améliorer le comportement des piétons par la réalité virtuelle : une étude empirique. Bordón. Revista De Pedagogía, 76(3), 99–123. https://doi.org/10.13042/Bordon.2024.100116
Rubrique
Artículos
Bibliographies de l'auteur-e

Alicia López-Álvarez, Universidad Complutense de Madrid (España)

Master’s degree student in Educational Research master from the Complutense University of Madrid. She graduated in Early Childhood Education and Primary Education with a major in English. Her research has focused on the use of VR as an educational tool and its relation to road safety and pedestrian behavior.

Luca Piovano, Universidad Politécnica de Madrid (España)

PhD in Computer Science by the University of Turin (Italy). He is currently the scientifical director of the Virtual Reality and Data Visualization Department at the Centre for Energy Efficiency (CEDINT) of Polytechnic University of Madrid, where he has been working since 2012. He has participated in several R&D projects, funded at both national and European level, applying Virtual/Augmented Reality and Visual Analysis techniques, among the others, to: develop digital twins of buildings for monitoring their energy consumption; support new therapeutic strategies for the treatment of alcohol use disorders; simulate possible collisions between Vulnerable Road Users and vehicles in urban traffic scenarios; and prepare educational tools to learn about raw materials and their widespread usage in current society.

Francisco Luque, Universidad Politécnica de Madrid (España)

Telecommunications engineer with a master’s degree in Software and Communications Systems. He has worked as a technical researcher in the Virtual Reality and Data Visualization department in the Centre for Energy Efficiency (CEDINT-UPM) since his graduation in 2008. In this period, he has participated in numerous national and European projects where, being the main technical responsible of the group, he has gained great experience concerning 3D graphic engines, virtual reality systems, 3D modeling and texturing and code programming for the implementation of immersive experiences in the area of Virtual and Augmented Reality. Other skills include analysis and visualization of spatial temporal complex data using web based tools.

Carlos De Aldama, Universidad Complutense de Madrid (España)

PhD in Educational Psychology at Autonomous University of Madrid. He is Assistant Professor at the department of Research and Psychology in Education, Faculty of Education, Complutense University of Madrid. His interests are mainly focused on how digital technologies are reshaping the different dimensions of human nature and society. In particular, he has largely researched how to integrate them in educational settings to enhance meaningful learning and how this is linked with higher mental processes, such as reasoning and thought.

##plugins.generic.badges.manager.settings.showBlockTitle##

Références

Aguilar-Reyes, C., Wozniak, D., Ham, A. & Zahabi, M. (2022). An adaptive virtual realitybased training system for pilots. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (vol. 66, n.º 1, pp. 1962-1966)., CA: SAGE Publications. https://doi.org/10.1177/1071181322661063

Assailly, J. P. (2017). Road safety education: What works? Patient education and counseling, 100, S24-S29. https://doi.org/10.1016/j.pec.2015.10.017

Baeza González, A., Usart Rodríguez, M. & Marqués Molías, L. (2023). Un análisis de las simulaciones virtuales desde la óptica del modelo TPACK. Bordón. Revista de Pedagogía, 75(4), 109-133. https://doi.org/10.13042/Bordon.2023.97585

Çakiroğlu, Ü., & Gökoğlu, S. (2019). Development of fire safety behavioral skills via virtual reality. Computers & Education, 133, 56-68. https://doi.org/10.1016/j.compedu.2019.01.014

Cook, D. A., Stanley, J. H., Brydges, R., Zendejas B, Szostek, J. H., Wang, T., Erwin, P. J. & Hatala, R. (2013). Comparative effectiveness of instructional design features in simulation-based education: Systematic review and meta-analysis. Medical Teacher, 35(1), e867-e898. https://doi.org/10.3109/0142159X.2012.714886

Deb, S., Carruth, D. W., Sween, R., Strawderman, L. & Garrison, T. M. (2017a). Efficacy of virtual reality in pedestrian safety research. Applied Ergonomics, 65, 449-460. https://doi.org/10.1016/j.apergo.2017.03.007

Deb, S., Strawderman, L., DuBien, J., Smith, B., Carruth, D. W. & Garrison, T. M. (2017b). Evaluating pedestrian behavior at crosswalks: Validation of a pedestrian behavior questionnaire for the US population. Accident Analysis & Prevention, 106, 191-201. https://doi.org/10.1016/j.aap.2017.05.020

Delgado, A. (2021). Campañas: ¿la clave? Repetir. Revista DGT. https://revista.dgt.es/es/reportajes/2021/09SEPTIEMBRE/0923-Campanas-publicidad.shtml

Feng, Q., Luo, H., Li, W., Chen, Y.,& Zhang, J. (2021). The moderating effect of debriefing on learning outcomes of IVR-based instruction: an experimental research. Applied Sciences, 11(21), 10426. https://doi.org/10.3390/app112110426

Ferguson, C., Van den Broek, E. L. & Van Oostendorp, H. (2020). On the role of interaction mode and story structure in virtual reality serious games. Computers & Education, 143, 103671. https://doi.org/10.1016/j.compedu.2019.103671

Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.) Sage publications Ltd. Gallucci, M. (2019). GAMLj: General analyses for linear models. [Jamovi module]. https://gamlj.github.io/

Gardner, R. (2013). Introduction to debriefing. In Seminars in perinatology, vol. 37, n.o 3, 166- 174. WB Saunders. https://doi.org/10.1053/j.semperi.2013.02.008

Gicquel, L., Ordonneau, P., Blot, E., Toillon, C., Ingrand, P. & Romo, L. (2017). Description of various factors contributing to traffic accidents in youth and measures proposed to alleviate recurrence. Frontiers in psychiatry, 8, 94. https://doi.org/10.3389/fpsyt.2017.00094

Granié, M. A., Pannetier, M. & Gueho, L. (2013). Developing a self-reporting method to measure pedestrian behaviors at all ages. Accident Analysis & Prevention, 50, 830-839. https://doi.org/10.1016/j.aap.2012.07.009

Hou, M., Chen, S. & Cheng, J. (2022). The effect of risk perception and other psychological factors on mobile phone use while crossing the street among pedestrians. Accident Analysis & Prevention, 170. https://doi.org/10.1016/j.aap.2022.106643 IBM Corp. Released 2020. IBM SPSS Statistics for Mac, Version 27.0. Armonk, NY: IBM Corp.

Lee, J., Lee, H., Kim, S., Choi, M., Ko, I. S., Bae, J. & Kim, S. H. (2020). Debriefing methods and learning outcomes in simulation nursing education: a systematic review and meta-analysis. Nurse Education Today, 87. https://doi.org./10.1016/j.nedt.2020.104345

León, O. G. & Montero, I. (2015). Métodos de investigación en psicología y educación: las tradiciones cuantitativa y cualitativa (4.ª). McGraw-Hill.

Levett-Jones, T. & Lapkin, S. (2014). A systematic review of the effectiveness of simulation debriefing in health professional education. Nurse Education Today, 34(6), e58-e63. https://doi.org/10.1016/j.nedt.2013.09.020

Luo, H., Yang, T., Kwon, S., Li, G., Zuo, M. & Choi, I. (2021). Performing versus observing: Investigating the effectiveness of group debriefing in a VR-based safety education program. Computers & Education, 175. https://doi.org/10.1016/j.compedu.2021.104316

Marrero Galván, J. J. & Hernández Padrón, M. (2022). La trascendencia de la realidad virtual en la educación STEM: una revisión sistemática desde el punto de vista de la experimentación en el aula. Bordón. Revista de Pedagogía, 74(4), 45-63. https://doi.org/10.13042/Bordon.2022.94179

National Road Safety Observatory (2021). Las primeras cifras de la siniestralidad de los peatones. Dirección General de Tráfico de Madrid, España. National Road Safety Observatory (2023). Siniestralidad mortal en vías interurbanas 2022. Dirección General de Tráfico de Madrid, España.

O’Hern, S., Stephens, A. N., Young, K. & Koppel, S., (2019). Personality traits as predictors of cyclist behavior. In: Paper Presented at the International Cycling Safety Conference – ICSC2019, 18-20 November 2019 (extended Version). Brisbane, Australia. QUT, Brisbane. https://doi.org/10.1016/j.aap.2020.105704

Osorio-García, D., Hernández-Pulgarín, G. & Escobar, D. A. (2023). Profiles of pedestrian risk behavior while crossing the street. Safety Science, 163. https://doi.org/10.1016/j.ssci.2023.106120

Palacios Ortega, A., Pascual López, V. & Moreno Mediavilla, D. (2022). El papel de las nuevas tecnologías en la educación STEM. Bordón. Revista de Pedagogía, 74(4), 11-21. https://doi.org/10.13042/Bordon.2022.96550

Parker, C., Scott, S. & Geddes, A. (2019). Snowball sampling. SAGE research methods foundations. https://doi.org/10.4135/9781526421036831710

Purcell, C. & Romijn, A. (2020). Teaching children road safety using a simulated environment. Journal of Education and Educational Development, 7(1), 44-54. https://doi.org/10.22555/joeed.v7i1.2948

Reason, J., Manstead, A., Stradling, S., Baxter, J. & Campbell, K. (1990). Errors and violations on the roads: a real distinction? Ergonomics, 33(10-11), 1315-1332. https://doi.org/10.1080/00140139008925335

Saadati, M., Razzaghi, A., Rezapour, R. & Pourebrahim, K. (2022). Interventions for safety promotion of pedestrians; A scoping review. Journal of Transport & Health, 24. https://doi.org/10.1016/j.jth.2021.101277

Schneider, S., Maruhn, P., Dang, N. T., Pala, P., Cavallo, V. & Bengler, K. (2022). Pedestrian crossing decisions in virtual environments: behavioral validity in CAVEs and head-mounted displays. Human Factors, 64(7), 1210-1226. https://doi.org/10.1177/0018720820987446

Secretary-General, U. N. (2020). Improving global road safety: note/by the Secretary-General.

Seo, H. J., Park, G. M., Son, M. & Hong, A. J. (2021). Establishment of virtual-reality-based safety education and training system for safety engagement. Education Sciences, 11(12), 786. https://doi.org/10.3390/educsci11120786

Twisk, D. A., Vlakveld, W. P., Commandeur, J. J., Shope, J. T. & Kok, G. (2014). Five road safety education programmes for young adolescent pedestrians and cyclists: A multi-programme evaluation in a field setting. Accident Analysis & Prevention, 66, 55-61. https://doi.org/10.1016/j.aap.2014.01.002

Useche, S. A., Alonso, F. & Montoro, L. (2020). Validation of the walking behavior questionnaire (WBQ): a tool for measuring risky and safe walking under a behavioral perspective. Journal of Transport & Health, 18. https://doi.org/10.1016/j.jth.2020.100899

Useche, S. A., Hezaveh, A. M., Llamazares, F. J. & Cherry, C. (2021). Not gendered… but different from each other? A structural equation model for explaining risky road behaviors of female and male pedestrians. Accident Analysis & Prevention, 150. https://doi.org/10.1016/j.aap.2020.105942

Vankov, D. & Jankovszky, D. (2021). Effects of using headset-delivered virtual reality in road safety research: A systematic review of empirical studies. Virtual Reality & Intelligent Hardware, 3(5), 351-368. https://doi.org/10.1016/j.vrih.2021.05.005

Wang, T., Wu, J., Zheng, P. & McDonald, M. (2010). Study of pedestrians’ gap acceptance behavior when they jaywalk outside crossing facilities. In 13th International IEEE Conference on Intelligent Transportation Systems (pp. 1295-1300). IEEE. https://doi.org/10.1109/ITSC.2010.5625157.

World Health Organization (2018). Global status report on road safety.

Zhou, R. & Horrey, W. J. (2010). Predicting adolescent pedestrians’ behavioral intentions to follow the masses in risky crossing situations. Transportation research part F: traffic psychology and behavior, 13(3), 153-163. https://doi.org/10.1016/j.trf.2009.12.001