Predictors of the risk of addiction to social networks and the Internet

Main Article Content

Clemente Rodríguez-Sabiote
Álvaro Manuel Úbeda-Sánchez
Claudia de Barros-Camargo
Daniel Álvarez-Ferrándiz

Abstract

INTRODUCTION. This study was based on the general objective of identifying factors that predict the risk of becoming addicted to the Internet or social networks. METHOD. A descriptive design has been used for the research, using mean, skewness and kurtosis, with a binomial logistic regression. A sample of 217 university students, all of them first year students of the Faculty of Education Sciences of the University of Granada, was used for the research. In this study the demographic variables of age and gender were considered within the investigated students, it is observed that the students had a mean age of 19.37 years and a median of 18 years. In which we can highlight that the majority gender of the sample is female (66.8%) and the remaining 33.2% is male. On the other hand, the Adolescent Risk of Addiction to Social Networks and the Internet (ERA-RSI) scale was used for data collection. RESULTS. The factors that most accurately predict risk of social networking and Internet addiction in firstyear college students are normalization, personal difficulties, and ego. Loneliness proved to be predictive, but to a lesser degree, and, finally, disinhibition proved to have no predictive influence. DISCUSSION. It was found that the telephone applications that are constantly launched on the Internet have a great influence on the predictors of addiction.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rodríguez-Sabiote, C. ., Úbeda-Sánchez, Álvaro M. ., de Barros-Camargo, C. ., & Álvarez-Ferrándiz, D. . (2024). Predictors of the risk of addiction to social networks and the Internet. Bordon. Revista De Pedagogia, 76(2), 197–219. https://doi.org/10.13042/Bordon.2024.99413
Section
Articles
Author Biographies

Clemente Rodríguez-Sabiote, Universidad de Granada (España)

Profesor titular del Departamento de MIDE de la Universidad de Granada. Autor de numerosos trabajos científicos publicados en revistas de impacto y miembro de diversos proyectos de investigación I+D+I.

Álvaro Manuel Úbeda-Sánchez, Universidad de Jaén (España)

Profesor ayudante doctor del Departamento de Pedagogía de la Universidad de Jaén. Ha publicado varios artículos científicos en revistas de impacto y Congresos Internacionales de prestigio.

Claudia de Barros-Camargo, Universidad Nacional de Educación a Distancia (España)

Profesora ayudante doctor del Departamento de MIDE-I (UNED, Madrid). Participación destacada en múltiples proyectos de investigación, publicaciones de impacto, así como dirección de congresos internacionales y nacionales.

Metrics

References

Akin, A. & Iskender, M. (2011). Internet addiction and depression, anxiety and stress. International online Journal of Educational Sciences, 3(1), 138-148.

Andreassen, C. S. (2015). Online social network site addiction: A comprehensive review. Current Addiction Reports, 2(2), 175-184. https://doi.org/10.1007/s40429-015-0056-9

Arrindell, W. A. & van der Ende, J. (1985). An empirical test of the utility of the observationsto- variables ratio in factor and components analysis. Applied Psychological Measurement, 9, 165-178.

Barat, N. & Sayadi, S. (2013). Relationship between using social networks and internet addiction and depression among students. Journal of Research in Behavioural Sciences, 10(5), 332-341.

Belsley, D. A. (1991). Conditioning Diagnostics: Collinearity and Weak Data in Regression. John Wiley & Sons.Bivin, J. B., Preeti, M., Preveen, C. T. & Jinto, P. (2013). Nomophobia – Do we really need to worry about? Review of Progress, 1(1), 1-5. https://doi.org/10.6084/m9.figshare.709549.v2

Brand, V. G. & García, L. E. G. (2023). La nomofobia en los adolescentes y el impacto en su salud mental: una revisión sistemática. Revista Argentina de Ciencias del Comportamiento (RACC), 15(3), 12-23.

Braña Sánchez, Á. J. & María de la Villa, M. J. (2023). Nomofobia y FoMO en el uso del smartphone en jóvenes: el rol de la ansiedad por estar conectado. Revista Argentina de Ciencias del Comportamiento, 15(3), 12-23.

Cala, V. & Martínez Gil, M. del C. (2022). Ciberviolencia en la pareja adolescente: análisis transcultural y de género en centros de secundaria. Bordón. Revista de Pedagogía, 74(2), 11-30. https://doi.org/10.13042/Bordon.2022.91342

Cao, X., Gong, M., Yu, L. & Dai, B. (2020). Exploring the mechanism of social media addiction: An empirical study from WeChat users. Internet Research, 30(4), 1305-1328.

Castelló, E. P. & Ponce, A. C. (2020). Nuevas adicciones: nomofobia o el “¡no sin mi móvil!”. Gaceta Internacional de Ciencias Forenses, 36, 41-45.

Contreras, J. H., Martínez, M. O., Almaguer, J. M., Ramírez, A. & Miramontes, A. (2019). Adicción a Internet: el caso de adolescentes de cinco escuelas secundarias de México. Enseñanza e Investigación en Psicología Nueva Época, 34-45.

Fernández-Ferrer, M. & Cano, E. (2016). The influence of the internet for pedagogical innovation: using twitter to promote online collaborative learning. International Journal of Educational Technology in Higher Education, 13(22), 1-15. https://doi.org/10.1186/s41239-016-0021-2

Gallardo-López, J. A., Pérez-Fuentes, M. D. C., Vallejo, M. D. M., Linares, J. J. G. & Herrera-Peco, I. (2020). Internet Use and Access in University Students: Risk Behaviors for Problematic Use and Its Association with Academic Performance and Emotions. Int J Environ Res Public Health, 17(9).

Gezgin, D. M., Cakir, O. & Yildirim, S. (2016). The relationship between levels of nomophobia prevalence and Internet addiction among high school students: the factors influencing nomophobia. International Journal of Research in Education and Science, 4(1), 215-225. https://doi.org/10.21890/ijres.383153

Gezgin, D. M., Sahin, Y. L. & Yildirim, S. (2017). The investigation of social network users’ nomophobia levels regarding to various factors. Educational Technology Theory and Practice, 7(1), 11-15.

Gómez-Galán, J. (2020). Media education in the ICT era: Theoretical structure for innovative teaching styles. Information, 11(5), 276. https://doi.org/10.3390/info11050276

Gómez-Galán, J., Vergara, D., Ordóñez-Olmedo, E. & Veytia-Bucheli, M. G. (2020). Time of use and patterns of Internet consumption in university students: A comparative study between Spanish-speaking countries. Sustainability, 12(12), 5087. https://doi.org/10.3390/su12125087

Griffiths, M. (2000). Does internet and computer “addiction” exist? Some case study evidence. Cyberpsychology & Behavior, 3, 211-218.

Griffiths, M. D., Kuss, D. J. & Demetrovics, Z. (2014). Social networking addiction: An overview and preliminary findings. En K. P. Rosenberg & L. C. Feder (eds.), Behavioral addictions. Criteria, evidence and treatment (pp. 119-141). Elsevier-Academic Press.

Gunay, O. Öztürk, A., Arslantas, E. & Sevinc, N. (2018). Internet addiction and depression levels in Erciyes University students. Dusunen Adam The Journal of Psychiatry and Neurological Sciences, 31(1), 79-88. https://doi.org/10.5350/DAJPN2018310108

Gundogmus, I., Kul, A. T. & Coban, D. A. (2020). Investigation of the relationship between social network usage and sleep quality among university students/Universite ogrencilerinde sosyal ag kullanimi ve uyku kalitesi arasindaki iliskisinin arastirilmasi. Anadolu Psikiyatri Dergisi, 141-149.

Habib, M. A. (2019). Internet addiction: the emergence of a new clinical disorder. Anwer Khan Modern Medical College Journal, 10(2), 103-104.

Hofstede, G. (2003). Culture’s consequences: Comparing values, behaviors, institutions and organizations across nations. Sage publications.

Hu, L. & Bentler, P. M. (1995). Evaluating model fit. In Hoyle, R. H. (ed.), Structural equation modeling: Concepts, issues, and applications (pp. 76-99). Sage.

IBM (2019). IBM SPSS Statistics for Windows (Version 26) [Computer Software]. IBM Corp.

Jeong, G. C. (2016). Relationships among mental health, internet addiction, and smartphone addiction in university students. The Journal of the Korea Contents Association, 16(4), 655-665. https://doi.org/10.5392/JKCA.2016.16.04.655

Katz, M. H. (2006). Multivariable analysis (2nd ed.). Cambridge University Press.

Keane, H. (2020). A normalised future of addiction. International Journal of Drug Policy, 102972. https://doi.org/10.1016/j.drugpo.2020.102972

Kleinbaum, D. G., Kupper, L. L. & Muller, K. E. (1988). Applied Regression Analysis and Other Multivariables Methods. PWS-KENT Publishing Company.

Kline, R. B. (2011). Principles and practice of structural equation modeling (3.th Ed). The Guilford Press.

Krishnamurthy, S. & Chetlapalli, S. K. (2015). Internet addiction: prevalence and risk factors: a cross-sectional study among college students in Bengaluru, the Silicon Valley of India. Indian journal of public health, 59(2), 115-121. https://doi.org/10.4103/0019-557X.157531

Kuss, D. J. & Griffiths, M. D. (2017). Social networking sites and addiction: Ten lessons learned. International Journal of Environmental Research and Public Health, 14(3), 311.

Lázaro, C. et al. (2021). Enfoque comunicativo y cultural de la situación de los profesionales de la salud frente a la pandemia de COVID-19. Revista Latina de Comunicación Social, 79, 357-380. https://www.doi.org/10.4185/RLCS-2021-1530

Lee, S. A., Jobe, M. C., Mathis, A. A. & Gibbons, J. A. (2020). Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. Journal of Anxiety Disorders, 74, 102268.

Lei, H., Li, S., Chiu, M. M. & Lu, M. (2018). Social support and Internet addiction among mainland Chinese teenagers and young adults: A meta-analysis. Computers in Human Behavior, 85, 200-209.

Lozano Blasco, R. et al. (2020). Social network addiction and its impact on anxiety level among university students. Sustainability, 12(13), 5397. https://doi.org/10.3390/su12135397

Lu, K., Yang, H. H., Shi, Y. & Wang, X. (2021). Examining the key influencing factors on college students’ higher-order thinking skills in the smart classroom environment. International Journal of Educational Technology in Higher Education, 18, 1-13.

MacCallum, R. C., Widaman, K. F., Zhang, S. & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84-99.

McDonald, R. P. (1999). Test theory: A unified treatment. Routlegde.

Montesó-Curto, P. & Aguilar, M. (2017). Transdisciplinarity in Higher Education for Sustainability: How Discourses Are Approached in Engineering Education. Culture and Dialogue, 7(2), 193-215.

Morata-Ramírez, M.ª A., Holgado-Tello, F. P., Barbero-García, I. & Méndez, G. (2015). Análisis factorial confirmatorio: recomendaciones sobre mínimos cuadrados no ponderados en función del error Tipo I de Ji-Cuadrado y RMSEA. Acción Psicológica, 12(1), 79-90. https://doi.org/10.5944/ap.12.1.14362

Moreno, A. J., López, J., Romero, J. M. & Rodríguez, A.M. (2020). Nomophobia: impact of cell phone use and time to rest among teacher students. Heliyon, 6(5) [https://doi.org/10.1016/j.heliyon.2020.e04084]

Moser, I. (2000). Against normalisation: subverting norms of ability and disability. Science as Culture, 9(2), 201-240. https://doi.org/10.1080/713695234

Nowland, R., Necka, E. A. & Cacioppo, J. T. (2018). Loneliness and social internet use: pathways to reconnection in a digital world? Perspectives on Psychological Sciences, 13(1), 70-87. https://doi.org/10.1177/1745691617713052

Öztürk, C., Bektas, M., Ayar, D., Öztornacı, B. Ö. & Yağcı, D. (2015). Association of personality traits and risk of internet addiction in adolescents. Asian Nursing Research, 9(2), 120-124.

Peña Hita, M. D. L. Á., Rueda López, E. & Pegalajar Palomino, M. D. C. (2018). Posibilidades didácticas de las redes sociales en el desarrollo de competencias de educación superior: Percepciones del alumnado. Píxel-Bit Revista de Medios y Educación, 53, 239-252. https://doi.org/10.12795/pixelbit.2018.i53.16

Pérez Cabrejos, R. G., Rodríguez Galán, D. B., Colquepisco Paúcar, N. T. & Enríquez Ludeña, R. L. (2021). Consecuencias de la nomofobia en adolescentes: una revisión sistemática. Conrado, 17(81), 203-210.

Peris, M., Maganto, C. & Garaigordobil, M. (2018). Scale of risk of addiction to social networks and Internet for adolescents: reliability and validity (ERA-RSI). Revista de Psicología Clínica con Niños y Adolescentes, 5(2), 30-36. https://doi.org/10.21134/rpcna.2018.05.2.4

Prats, M. A., Torres-Rodríguez, A., Oberst, U. & Carbonell, X. (2018). Diseño y aplicación de talleres educativos para el uso saludable de internet y redes sociales en la adolescencia: descripción de un estudio piloto. Píxel-Bit. Revista de Medios y Educación, 52, 111-124. https://doi.org/10.12795/pixelbit.2018.i52.08

Robertson, T. W., Yan, Z. & Rapoza, K. A. (2018). Is resilience a protective factor of internet addiction? Computers in Human Behavior, 78, 255-260.

Rodgers, R. F., Faure, K. & Chabrol, H. (2009). Gender differences in parental influences on adolescent body dissatisfaction and disordered eating. Sex Roles, 61, 837-849. https://doi.org/10.1007/s11199-009-9690-9

Rodríguez-Sabiote, C., Álvarez-Rodríguez, J., Álvarez-Ferrandiz, D. & Zurita-Ortega, F. (2020). Development of Nomophobia Profiles in Education Students through the Use of Multiple Correspondence Analysis. International Journal of Environmental Research and Public Health, 17(21), 8252.

Ruiz, C. & Ruiz Domínguez, M. A. (2023). Análisis del entorno personal de aprendizaje para la mejora de la competencia digital docente. Bordón. Revista de Pedagogía, 75(3), 135-152. https://doi.org/10.13042/Bordon.2023.97841

Ryu, E. (2011). Effects of skewness and kurtosis on normal-theory based maximum likelihood test statistic in multilevel structural equation modeling. Behavior Research Methods, 43(4), 1066-1074. https://doi.org/10.3758/s13428-011-0115-7

Salmerón, H., Fernández, S. R. & Braojos, C. G. (2010). Metodologías que optimizan la comunicación en entornos de aprendizaje virtual. Comunicar, 34(17), 163-171. https://doi.org/10.3916/C34-2010-03-16

Samaha, M. & Hawi, N. S. (2016). Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Computers in Human Behavior, 57, 321-325.

Sánchez-Teruel, D. & Robles-Bello, M. A. (2016). Riesgos y potencialidades de la era digital para la infancia y la adolescencia. Educación y Humanismo, 18(31), 186-204. https://doi.org/10.17081/eduhum.18.31.1374

Sanz Benito, I., Lázaro Cantabrana, J. L. & Grimalt Álvaro, C. (2023). La inclusión digital en la formación inicial del profesorado: una revisión sistemática. Bordón. Revista de Pedagogía, 75(1), 127-146. https://doi.org/10.13042/Bordon.2023.94541

Selvi, Y., Özdemir, P. G., Özdemir, M., Boysan, M. & Yıldız, M. (2020). Problematic smartphone use in terms of gender, attachment styles and subjective well-being in university students. International journal of mental health and addiction, 1-14. https://link.springer.com/article/10.1007%2Fs11469-019-00204-5

Simsek, G. G. & Noyan, F. (2012). Structural equation modeling with ordinal variables: a large sample case study. Quality & Quantity, 46(5), 1571-1581. https://doi.org/10.1007/s11135-011-9467-4

Soto Vega, E. (2010). Historia de la educación peruana. Derrama Magisterial.

Tao, R., Huang, X., Wang, J., Zhang, H., Zhang, Y. & Li, M. (2010). Proposed diagnostic criteria for internet addiction. Addiction, 105(3), 556-564. doi: 10.1111/j1360-0443.2009.02828.x

Utz, S., Tanis, M. & Vermeulen, I. (2012). It is all about being popular: The effects of need for popularity on social network site use. Cyberpsychology, Behavior, and Social Networking, 15(1), 37-42. https://doi.org/10.1089/cyber.2010.0651

Vaghefi, I., Qahri-Saremi, H. & Turel, O. (2020). Dealing with social networking site addiction: A cognitive-affective model of discontinuance decisions. Internet Research, 30(5), 1427-1453. https://doi.org/10.1108/INTR-10-2019-0418

Van den Eijnden, R. J., Lemmens, J. S. & Valkenburg, P. M. (2016). The social media disorder scale. Computers in human behavior, 61, 478-487. https://doi.org/10.1016/j.chb.2016.03.038

Yildirim, C. & Correia, A. P. (2015). Exploring the dimensions of nomophobia: development and validation of a self-reported questionnaire. Computers in Human Behavior, 49, 130-137. https://doi.org/10.1016/j.chb.2015.02.059

Zumbo, B. D., Gadermann, A. M. & Zeisser, C. (2007). Ordinal versions of coefficients alpha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6(1), 21-29. https://doi.org/10.22237/jmasm/1177992180