Psychometric properties of the Observational Gait Scale for Persons with Lower limb Amputation
DOI:
https://doi.org/10.23938/ASSN.1152Keywords:
Lower limb amputation, Minimal detectable change, Observational gait scale, Reliability, Construct validityAbstract
Background. The aim of this study was to examine the psychometric properties of the Observational Gait Scale for Individuals with Lower Limb Amputation, including intra- and inter-rater reliability, minimal detectable change, and construct validity.
Methods. An observational study was conducted in individuals with unilateral lower limb amputation. Gait was recorded under standardized conditions and independently assessed by two trained evaluators using the Observational Gait Scale for Individuals with Lower Limb Amputation, which comprised two sections: 1 - assessment of kinematic gait patterns focused on joint mobility, and 2 – assessment of spatiotemporal parameters. Intraclass correlation coefficient, Bland-Altman plots and Pearson’s correlation with the Houghton Scale were used.
Results. Thirty-seven participants were included, 56.8% women and mean age 45.6 years (SD=13.8). Intra-rater reliability was excellent for the total score (ICC = 0.996), section 1 (ICC = 0.988), and section 2 (ICC = 0.995) with an MDC95 of 0.12 points. Inter-rater reliability was also excellent (total ICC = 0.987; section 1 = 0.966; section 2 = 0.986), with an MDC95 of 0.36 points. Bland-Altman analysis showed narrow limits of agreement (±1.4 points intra-rater and ±2.28 points inter-rater). Construct validity was strong and statistically significant (r= -0.773; p <0.001).
Conclusions. The Observational Gait Scale for Persons with Lower Limb Amputation is a reliable and valid tool for assessing an objective and structured evaluation of gait patterns in individuals with unilateral lower limb amputation. Its design, excellent reliability and strong construct validity support its use in both clinical practice and research.
Downloads
References
1. GAILEY RS, GAUNAURD IA, KIRK-SANCHEZ NJ, GARD SA, KRISTAL A. The development and reliability testing of the Functional Lower-Limb Amputee Gait Assessment. Clin Rehabil 2023;37(12):1656-1669. https://doi.org/10.1177/02692155231185950
2. DARTER BJ, WILKEN JM. Energetic consequences of using a prosthesis with adaptive ankle motion during slope walking in persons with a transtibial amputation. Prosthet Orthot Int 2014;38(1):5-11. https://doi.org/10.1177/0309364613481489
3. FONT-JIMENEZ I, LLAURADÓ-SERRA M, PALLARÉS-MARTÍ À, GARCÍA-HEDRERA F. Factores psicosociales implicados en la amputación. Revisión sistemática de la literatura. Aten Primaria 2016;48(3):207-210. https://doi.org/10.1016/j.aprim.2015.04.009
4. VAN VELZEN JM, VAN BENNEKOM CA, POLOMSKI W, SLOOTMAN JR, VAN DER WOUDE LH, HOUDIJK H. Physical capacity and walking ability after lower limb amputation: a systematic review. Clin Rehabil 2006;20(11):999-1016. https://doi.org/10.1177/0269215506070700
5. DEVLIN M, SINCLAIR LB, COLMAN D, PARSONS J, NIZIO H, CAMPBELL JE. Patient preference and gait efficiency in a geriatric population with transfemoral amputation using a free-swinging versus a locked prosthetic knee joint. Arch Phys Med Rehabil 2002;83(2):246-249. https://doi.org/10.1053/apmr.2002.27464
6. HIGHSMITH MJ, ANDREWS CR, MILLIKAN KW, KAHLE JT, KLENOW TD, LEWIS KL et al. Gait training interventions for lower extremity amputees: a systematic literature review. Technol Innov 2016;18(2–3):149-155. https://doi.org/10.21300/18.2-3.2016.149
7. MOLINA-RUEDA F, GARRIDO-BALAGUER M, CORTÉS-RODRÍGUEZ A, CARRATALÁ-TEJADA M, CUESTA-GÓMEZ A, FERNÁNDEZ-GONZÁLEZ P et al. Escala observacional de la marcha del sujeto con amputación de la extremidad inferior: diseño y validez de contenido. Rehabilitación (Madr) 2020;54(2):79-86. https://doi.org/10.1016/j.rh.2019.12.002
8. ESQUENAZI A, DIGIACOMO R. Rehabilitation after amputation. J Am Podiatr Med Assoc 2001;91(1):13-22. https://doi.org/10.7547/87507315-91-1-13
9. MOLERO-SÁNCHEZ A, ALGUACIL-DIEGO IM, MOLINA-RUEDA F. La marcha en las enfermedades articulares y en el individuo con amputación. En: Molina-Rueda F, Carratalá-Tejada M (eds). La marcha humana: biomecánica, evaluación y patología. 1ª ed. Madrid: Médica Panamericana, 2020; 149-156.
10. FERRARELLO F, BIANCHI VA, BACCINI M, RUBBIERI G, MOSSELLO E, CAVALLINI MC et al. Tools for observational gait analysis in patients with stroke: a systematic review. Phys Ther 2013;93(12):1673-1685. https://doi.org/10.2522/ptj.20120344
11. LORD SE, HALLIGAN PW, WADE DT. Visual gait analysis: the development of a clinical assessment and scale. Clin Rehabil 1998;12(2):107-119. https://doi.org/10.1191/026921598666182531
12. DALY JJ, NETHERY J, MCCABE JP, BRENNER I, ROGERS JM, GANSEN J et al. Development and testing of the Gait Assessment and Intervention Tool (GAIT): A measure of coordinated gait components. J Neurosci Methods 2009;178(2):334-339. https://doi.org/10.1016/j.jneumeth.2008.12.016
13. BURII O. Repeatability and validity of the Prosthetic Observational Gait Scale in patients with bilateral lower limb amputations. Arch Phys Med Rehabil 2025;106(4):e11. https://doi.org/10.1016/j.apmr.2025.01.029
14. WONG CK, GIBBS W, CHEN ES. Use of the Houghton Scale to classify community and household walking ability in people with lower-limb amputation: criterion-related validity. Arch Phys Med Rehabil 2016;97(7):1130-1136. https://doi.org/10.1016/j.apmr.2016.01.022
15. DEVLIN M, PAULEY T, HEAD K, GARFINKEL S. Houghton Scale of prosthetic use in people with lower-extremity amputations: reliability, validity, and responsiveness to change. Arch Phys Med Rehabil 2004;85(8):1339-1344. https://doi.org/10.1016/j.apmr.2003.09.025
16. WALTER SD, ELIASZIW M, DONNER A. Sample size and optimal designs for reliability studies. Stat Med 1998;17(1):101-110. https://doi.org/10.1002/(sici)1097-0258(19980115)17:1<101::aid-sim727>3.0.co;2-e
17. GOR-GARCÍA-FOGEDA MD, TOMÉ-REDONDO S, SIMÓN-HIDALGO C, DALY JJ, MOLINA-RUEDA F, CANO-DE-LA-CUERDA R. Reliability and minimal detectable change in the Gait Assessment and Intervention Tool in patients with multiple sclerosis. PM&R 2020;12(7):685-691. https://doi.org/10.1002/pmrj.12264
18. PORTNEY LG, WATKINS MP. Foundations of Clinical Research: Applications to Practice. 3rd ed. Upper Saddle River: Pearson/Prentice Hall, 2015.
19. BLAND JM, ALTMAN DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1(8476):307-310. https://doi.org/10.1016/S0140-6736(86)90837-8
20. MUKAKA MM. A guide to appropriate use of correlation coefficient in medical research. Malawi Med J 2012;24(3):69-71. PMID: 23638278
21. Haley SM, Fragala-Pinkham MA. Interpreting change scores of tests and measures used in physical therapy. Phys Ther 2006;86(5):735-743. https://doi.org/10.1093/ptj/86.5.735
22. MELDRUM D, SHOULDICE C, CONROY R, JONES K, FORWARd M. Test-retest reliability of three-dimensional gait analysis: including a novel approach to visualising agreement of gait cycle waveforms with Bland and Altman plots. Gait Posture 2014;39(1):265-271. https://doi.org/10.1016/j.gaitpost.2013.07.130
23. FERNÁNDEZ-GONZÁLEZ P, KOUTSOU A, CUESTA-GÓMEZ A, CARRATALÁ-TEJADA M, MIANGOLARRA-PAGE JC, MOLINA-RUEDA F. Reliability of Kinovea® software and agreement with a three-dimensional motion system for gait analysis in healthy subjects. Sensors (Basel) 2020;20(11):3154. https://doi.org/10.3390/s20113154
24. MOLINA-RUEDA F, ALGUACIL-DIEGO IM, CUESTA-GÓMEZ A, IGLESIAS-GIMÉNEZ J, MARTÍN-VIVALDI A, MIANGOLARRA-PAGE JC. Thorax, pelvis and hip pattern in the frontal plane during walking in unilateral transtibial amputees: biomechanical analysis. Braz J Phys Ther 2014;18(3):252-258. https://doi.org/10.1590/bjpt-rbf.2014.0032
25. MOLINA RUEDA F, ALGUACIL DIEGO IM, MOLERO SÁNCHEZ A, CARRATALÁ TEJADA M, RIVAS MONTERO FM, MIANGOLARRA PAGE JC. Knee and hip internal moments and upper-body kinematics in the frontal plane in unilateral transtibial amputees. Gait Posture 2013;37(3):436-439. https://doi.org/10.1016/j.gaitpost.2012.08.019
26. RESNIK L, BORGIA M. Reliability of outcome measures for people with lower-limb amputations: distinguishing true change from statistical error. Phys Ther 2011;91(4):555-565. https://doi.org/10.2522/ptj.20100287
27. GAILEY RS, ROACH KE, APPLEGATE EB, CHO B, CUNNIFFE B, LICHT S et al. The Amputee Mobility Predictor: an instrument to assess determinants of the lower-limb amputee’s ability to ambulate. Arch Phys Med Rehabil 2002;83(5):613-627. https://doi.org/10.1053/apmr.2002.32309
28. DEATHE AB, MILLER WC. The L test of functional mobility: measurement properties of a modified version of the timed "up & go" test designed for people with lower-limb amputations. Phys Ther. 2005;85(7):626-635. https://doi.org/10.1093/ptj/85.7.626
29. SCHACK J, MIRTAHERI P, STEEN H, GJØVAAG T. Assessing mobility for persons with lower limb amputation: the Figure-of-Eight Walk Test with the inclusion of two novel conditions. Disabil Rehabil. 2021;43(9):1323-1332. https://doi.org/10.1080/09638288.2019.1662495
30. HILLMAN SJ, DONALD SC, HERMAN J, MCCURRACH E, MCGARRY A, RICHARDSON AM et al. Repeatability of a new observational gait score for unilateral lower limb amputees. Gait Posture. 2010;32(1):39-45. https://doi.org/10.1016/j.gaitpost.2010.03.007
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Anales del Sistema Sanitario de Navarra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
La revista Anales del Sistema Sanitario de Navarra es publicada por el Departamento de Salud del Gobierno de Navarra (España), quien conserva los derechos patrimoniales (copyright ) sobre el artículo publicado y favorece y permite la difusión del mismo bajo licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (CC BY-SA 4.0). Esta licencia permite copiar, usar, difundir, transmitir y exponer públicamente el artículo, siempre que siempre que se cite la autoría y la publicación inicial en Anales del Sistema Sanitario de Navarra, y se distinga la existencia de esta licencia de uso.


