Efectos de la terapia de movimiento MOTOmed® sobre la función motora y los principales síntomas de pacientes con enfermedad de Parkinson: una revisión sistemática (Effects of MOTOmed® movement therapy on the motor function and main symptoms of patients with Parkinson’s disease: a systematic review)
DOI:
https://doi.org/10.47197/retos.v47.93936Palabras clave:
Adamovich, S. V., Berkinblit, M. B., Hening, W., Sage, J., & Poizner, H. (2001). The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience, 104(4), 1027-1041. Ahlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa‐related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement disorders: official journal of the Movement Disorder Society, 16(3), 448-458. Alberts, J. L., Linder, S. M., Penko, A. L., Lowe, M. J., & Phillips, M. (2011). It is not about the bike, it is about the pedaling: forced exercise and Parkinson's disease. Exercise and sport sciences reviews, 39(4), 177-186. Berardelli, A., Rothwell, J. C., Thompson, P. D., & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson's disease. Brain, 124(11), 2131-2146. Bilowit, D. S. (1956). Establishing physical objectives in the rehabilitation of patients with Parkinson’s disease (gymnasium activities). Physical Therapy, 36(3), 176-178. Blumenthal, J. A., Babyak, M. A., Moore, K. A., Craighead, W. E., Herman, S., Khatri, P., ... & Krishnan, K. R. (1999). Effects of exercise training on older patients with major depression. Archives of internal medicine, 159(19), 2349-2356. Carboncini, M. C., Manzoni, D., Strambi, S., Bonuccelli, U., Pavese, N., Andre, P., & Rossi, B. (2001). The relation between EMG activity and kinematic parameters strongly supports a role of the action tremor in parkinsonian bradykinesia. Movement disorders: official journal of the Movement Disorder Society, 16(1), 47-57. Cheng, J., Brooke, J. D., Misiaszek, J. E., & Staines, W. R. (1995). The relationship between the kinematics of passive movement, the stretch of extensor muscles of the leg and the change induced in the gain of the soleus H reflex in humans. Brain research, 672(1-2), 89-96. Christensen, L. O., Johannsen, P., Sinkjær, T., Petersen, N., Pyndt, H. S., & Nielsen, J. B. (2000). Cerebral activation during bicycle movements in man. Experimental Brain Research, 135(1), 66-72. Cummings, J. L. (1999). Understanding Parkinson disease. Jama, 281(4), 376-378. Damiano, D. L., Arnold, A. S., Steele, K. M., & Delp, S. L. (2010). Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Physical therapy, 90(2), 269-279. Davies, P. M. (2000). Steps to follow: the comprehensive treatment of patients with hemiplegia. Springer Science & Business Media. Dibble, L. E., Hale, T. F., Marcus, R. L., Droge, J., Gerber, J. P., & LaStayo, P. C. (2006). High‐intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 21(9), 1444-1452. Dorsey, E. A., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., ... & Tanner, C. M. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68(5), 384-386. Dunn, A. L., Trivedi, M. H., Kampert, J. B., Clark, C. G., & Chambliss, H. O. (2005). Exercise treatment for depression: efficacy and dose response. American journal of preventive medicine, 28(1), 1-8. Ericson, M. (1986). On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer. Scandinavian journal of rehabilitation medicine. Supplement, 16, 1-43. Farley, B. G., & Koshland, G. F. (2005). Training BIG to move faster: the application of the speed–amplitude relation as a rehabilitation strategy for people with Parkinson’s disease. Experimental brain research, 167(3), 462-467. Fickes, E. J. (2012). Effects of interval active-assisted cycling on balance in individuals with parkinson's disease. Kent State University. Findley, L., Aujla, M., Bain, P. G., Baker, M., Beech, C., Bowman, C., ... & Playfer, J. R. (2003). Direct economic impact of Parkinson's disease: a research survey in the United Kingdom. Movement disorders, 18(10), 1139-1145. Gao, C. H., Xu, L. Y., Huang, J., & Xiao, F. (2013). Effect of MOTOmed intelligent training system on balance and lower limb motor function in stroke patients. Chinese Journal of Rehabilitation Theory and Practice, 19, 725-728. Giuffrida, J. P., Riley, D. E., Maddux, B. N., & Heldman, D. A. (2009). Clinically deployable Kinesia™ technology for automated tremor assessment. Movement disorders: official journal of the Movement Disorder Society, 24(5), 723-730. Hackney, M. E., & Earhart, G. M. (2009). Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom. Journal of rehabilitation medicine: official journal of the UEMS European Board of Physical and Rehabilitation Medicine, 41(6), 475. Heldman, D. A., Giuffrida, J. P., Chen, R., Payne, M., Mazzella, F., Duker, A. P., ... & Espay, A. J. (2011). The modified bradykinesia rating scale for Parkinson's disease: reliability and comparison with kinematic measures. Movement Disorders, 26(10), 1859-1863. Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: onset, progression, and mortality., v. 17, n. Jain, S., Gourab, K., Schindler-Ivens, S., & Schmit, B. D. (2013). EEG during pedaling: evidence for cortical control of locomotor tasks. Clinical Neurophysiology, 124(2), 379-390. Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry, 79(4), 368-376. Krzeminski, K., Kruk, B., Nazar, K., Ziemba, A. W., Cybulski, G., & Niewiadomski, W. (2000). Cardiovascular, metabolic and plasma catecholamine responses to passive and active exercises. Journal of Physiology and Pharmacology, 51(2). L.C. Triarhou. Dopamine and Parkinson's disease. In Madame Curie Bioscience Database [Internet]. Landes Bioscience. Available from: http://www.ncbi.nlm.nih.gov/books/NBK6271/. Austin, Texas: Landes Bioscience, 2013. Latt, M. D., Lord, S. R., Morris, J. G., & Fung, V. S. (2009). Clinical and physiological assessments for elucidating falls risk in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 24(9), 1280-1289. Laupheimer, M., Hartel, S., & Schmidt, S. (2011). Forced exercise effects of motomed® training on parkinson’s-typical motor dysfunctions. Neurology and Rehabilitation, 17(5/6), 239-246. Lee, K. S., Lee, W. H., & Hwang, S. (2011). Modified constraint-induced movement therapy improves fine and gross motor performance of the upper limb in Parkinson disease. American Journal of Physical Medicine & Rehabilitation, 90(5), 380-386. Ludyga, S., Gronwald, T., & Hottenrott, K. (2016). Effects of high vs. low cadence training on cyclists’ brain cortical activity during exercise. Journal of Science and Medicine in Sport, 19(4), 342-347. Morris, M. E., Martin, C. L., & Schenkman, M. L. (2010). Striding out with Parkinson disease: evidence-based physical therapy for gait disorders. Physical therapy, 90(2), 280-288. Mostile, G., Giuffrida, J. P., Adam, O. R., Davidson, A., & Jankovic, J. (2010). Correlation between Kinesia system assessments and clinical tremor scores in patients with essential tremor. Movement disorders, 25(12), 1938-1943. Müller, T., & Muhlack, S. (2007). Impact of endurance exercise on levodopa associated cortisol release and force increase in patients with Parkinson's disease. Aktuelle Neurologie, 34(S 2), P624. Naito, E., Nakashima, T., Kito, T., Aramaki, Y., Okada, T., & Sadato, N. (2007). Human limb‐specific and non‐limb‐specific brain representations during kinesthetic illusory movements of the upper and lower extremities. European Journal of Neuroscience, 25(11), 3476-3487. Nobrega, A. C., Williamson, J. W., Friedman, D. B., Araujo, C. G., & Mitchell, J. H. (1994). Cardiovascular responses to active and passive cycling movements. Medicine and science in sports and exercise, 26(6), 709-714. Peacock, C. A., Sanders, G. J., Wilson, K. A., Fickes-Ryan, E. J., Corbett, D. B., von Carlowitz, K. P. A., & Ridgel, A. L. (2014). Introducing a multifaceted exercise intervention particular to older adults diagnosed with Parkinson’s disease: a preliminary study. Aging clinical and experimental research, 26(4), 403-409. Richards, M., Marder, K., Cote, L., & Mayeux, R. (1994). Interrater reliability of the Unified Parkinson's Disease Rating Scale motor examination. Movement Disorders, 9(1), 89-91. Ridgel, A. L., Muller, M. D., Kim, C. H., Fickes, E. J., & Mera, T. O. (2011). Acute effects of passive leg cycling on upper extremity tremor and bradykinesia in Parkinson's disease. The Physician and sportsmedicine, 39(3), 83-93. Ridgel, A. L., Phillips, R. S., Walter, B. L., Discenzo, F. M., & Loparo, K. A. (2015). Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease. Frontiers in neurology, 6, 194. Ridgel, A. L., Vitek, J. L., & Alberts, J. L. (2009). Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabilitation and neural repair, 23(6), 600-608. Ridgel, A. L., Vitek, J. L., & Alberts, J. L. (2009). Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabilitation and neural repair, 23(6), 600-608. Rothwell, J. C., Obeso, J. A., Traub, M. M., & Marsden, C. D. (1983). The behaviour of the long-latency stretch reflex in patients with Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 46(1), 35-44. Shen, C., Liu, F., Yao, L., Li, Z., Qiu, L., & Fang, S. (2018). Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: a systematic review and meta-analysis. Clinical rehabilitation, 32(12), 1569-1580. Stuckenschneider, T., Helmich, I., Raabe-Oetker, A., Froböse, I., & Feodoroff, B. (2015). Active assistive forced exercise provides long-term improvement to gait velocity and stride length in patients bilaterally affected by Parkinson's disease. Gait & Posture, 42(4), 485-490. Vitório, R., Teixeira-Arroyo, C., Lirani-Silva, E., Barbieri, F. A., Caetano, M. J. D., Gobbi, S., ... & Teresa Bucken Gobbi, L. (2011). Effects of 6-month, multimodal exercise program on clinical and gait parameters of patients with idiopathic Parkinson's disease: a pilot study. International Scholarly Research Notices, 2011. Wilson, K. A. (2013). Interval Active-Assisted Cycling Intervention Improves Motor Function in Individuals' with Parkinson's Disease (Doctoral dissertation, Kent State University). Zhang, J. J., Hu, X. F., & Xu, X. L. (2012). Development of lower limbs rehabilitative training robot. Chin J RResumen
Introducción: Los hallazgos científicos muestran mejoras inmediatas después de un ciclismo asistido y forzado en altas velocidades de pedaleo de hasta 90 revoluciones por minuto en pacientes con la Enfermedad de Parkinson, así esta revisión tuvo por objetivo estimar la eficacia de la terapia de movimiento MOTOmed® para aumentar la función motora y aliviar los principales síntomas en eso pacientes. Métodos: Revisión sistemática que incluyó ensayos controlados aleatorios que examinaron las intervenciones de terapia de movimiento MOTOmed®, exclusiva o como un extra a la rehabilitación, para pacientes con enfermedad de Parkinson. La herramienta de evaluación del riesgo de sesgo siguió las recomendaciones del manual Cochrane 5.1.0. Todos los estudios incluidos informaron los efectos de la movilidad como resultados primarios. Se calcularon las diferencias de medias estandarizadas o las diferencias de medias con los correspondientes intervalos de confianza (IC) del 95%. Resultados: En total, se incluyeron en el análisis 7 ensayos con un total de 206 pacientes. Todos los estudios fueron de calidad moderada. La terapia de movimiento MOTOmed® resultó en mejoras estadísticamente significativas en el puntaje del MDS-UPDRS (Movement Disorder Society-Unified Parkinson Disease Rating Scale), Motor III (p<0.05); Puntaje MDS- UPDRS de las extremidades superiores (p<0,05); MDS- UPDRS total (p<0,04): Función tren superior (p<0,007); bradicinesia (p<0,044); Variables de ciclismo: mayor cadencia (p<0,001); Temporizado arriba y listo (p>0.05); puntuación de temblor (p<0,05); Tiempo de caminata (p<0,05); Pasos de marcha (p<0,05); Pronación y supinación (p<0,05); Parkinson's Disease Questionnaire -PQD8 (vendajes y depresiones p<0,05); Análisis de la marcha: velocidad (p<0,000), longitud de zancada (p<0,000), postura monopedal (p<0,000), fase de balanceo (p<0,000); Sistema de Equilibrio Biodex®: Clinical Test of Sensory Integration of Balance-CTSIB1 (p<0,007).Conclusión: la terapia de movimiento MOTOmed® exclusiva o combinada con la rehabilitación estándar mejora la función motora y los principales síntomas en pacientes con enfermedad de Parkinson.
Palabras clave: Enfermedad de Parkinson, MOTOmed®, Fisioterapia, Actividad Física, Rehabilitación.
Abstract. Introduction: Scientific findings show immediate improvements after forced assisted cycling at high pedaling speeds of up to 90 revolutions per minute in patients with Parkinson's Disease, thus this review aimed to estimate the efficacy of MOTOmed® movement therapy. to increase motor function and alleviate the main symptoms in these patients. Methods: Systematic review including randomized controlled trials examining MOTOmed® movement therapy interventions, alone or as an adjunct to rehabilitation, for patients with Parkinson's disease. The risk of bias assessment tool followed the recommendations of the Cochrane Handbook 5.1.0. All included studies reported the effects of mobility as primary outcomes. Standardized mean differences or mean differences with corresponding 95% confidence intervals (CI) were calculated. Results: In total, 7 trials with a total of 206 patients were included in the analysis. All studies were of moderate quality. MOTOmed® movement therapy resulted in statistically significant improvements in the MDS-UPDRS (Movement Disorder Society-Unified Parkinson Disease Rating Scale) Motor III score (p<0.05); Upper limb MDS-UPDRS score (p<0.05); Total MDS-UPDRS (p<0.04): Upper body function (p<0.007); bradykinesia (p<0.044); Cycling variables: higher cadence (p<0.001); Timed up and done (p>0.05); tremor score (p<0.05); Walking time (p<0.05); Gait steps (p<0.05); Pronation and supination (p<0.05); Parkinson's Disease Questionnaire -PQD8 (bandages and depressions p<0.05); Gait analysis: speed (p<0.000), stride length (p<0.000), monopedal posture (p<0.000), swing phase (p<0.000); Biodex® Balance System: Clinical Test of Sensory Integration of Balance-CTSIB1 (p<0.007). Conclusion: MOTOmed® movement therapy alone or combined with standard rehabilitation improves motor function and main symptoms in patients with Parkinson's disease.
Keywords: Parkinson´s disease, MOTOmed®, Physical Therapy, Physical Activity, Rehabilitation.
Citas
Adamovich, S. V., Berkinblit, M. B., Hening, W., Sage, J., & Poizner, H. (2001). The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson’s disease. Neuroscience, 104(4), 1027-1041.
Ahlskog, J. E., & Muenter, M. D. (2001). Frequency of levodopa‐related dyskinesias and motor fluctuations as estimated from the cumulative literature. Movement disorders: official journal of the Movement Disorder Society, 16(3), 448-458.
Alberts, J. L., Linder, S. M., Penko, A. L., Lowe, M. J., & Phillips, M. (2011). It is not about the bike, it is about the pedaling: forced exercise and Parkinson's disease. Exercise and sport sciences reviews, 39(4), 177-186.
Berardelli, A., Rothwell, J. C., Thompson, P. D., & Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson's dis-ease. Brain, 124(11), 2131-2146.
Bilowit, D. S. (1956). Establishing physical objectives in the rehabilitation of patients with Parkinson’s disease (gymnasium activities). Physical Therapy, 36(3), 176-178.
Blumenthal, J. A., Babyak, M. A., Moore, K. A., Craighead, W. E., Herman, S., Khatri, P., ... & Krishnan, K. R. (1999). Effects of exercise training on older patients with major depression. Archives of internal medicine, 159(19), 2349-2356.
Carboncini, M. C., Manzoni, D., Strambi, S., Bonuccelli, U., Pavese, N., Andre, P., & Rossi, B. (2001). The relation between EMG activity and kinematic parameters strongly supports a role of the action tremor in parkinsonian bradykinesia. Movement disorders: official journal of the Movement Disorder Society, 16(1), 47-57.
Cheng, J., Brooke, J. D., Misiaszek, J. E., & Staines, W. R. (1995). The relationship between the kinematics of passive movement, the stretch of extensor muscles of the leg and the change induced in the gain of the soleus H reflex in humans. Brain research, 672(1-2), 89-96.
Christensen, L. O., Johannsen, P., Sinkjær, T., Petersen, N., Pyndt, H. S., & Nielsen, J. B. (2000). Cerebral activation during bicycle movements in man. Experimental Brain Research, 135(1), 66-72.
Cummings, J. L. (1999). Understanding Parkinson dis-ease. Jama, 281(4), 376-378.
Damiano, D. L., Arnold, A. S., Steele, K. M., & Delp, S. L. (2010). Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Physical therapy, 90(2), 269-279.
Davies, P. M. (2000). Steps to follow: the comprehensive treatment of patients with hemiplegia. Springer Science & Business Media.
Dibble, L. E., Hale, T. F., Marcus, R. L., Droge, J., Gerber, J. P., & LaStayo, P. C. (2006). High‐intensity resistance training amplifies muscle hypertrophy and functional gains in persons with Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 21(9), 1444-1452.
Dorsey, E. A., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Kieburtz, K., ... & Tanner, C. M. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68(5), 384-386.
Dunn, A. L., Trivedi, M. H., Kampert, J. B., Clark, C. G., & Chambliss, H. O. (2005). Exercise treatment for depression: efficacy and dose response. American journal of preventive medi-cine, 28(1), 1-8.
Ericson, M. (1986). On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergome-ter. Scandinavian journal of rehabilitation medicine. Supplement, 16, 1-43.
Farley, B. G., & Koshland, G. F. (2005). Training BIG to move faster: the application of the speed–amplitude relation as a rehabilitation strategy for people with Parkinson’s disease. Experimental brain research, 167(3), 462-467.
Fickes, E. J. (2012). Effects of interval active-assisted cycling on balance in individuals with parkinson's disease. Kent State University.
Findley, L., Aujla, M., Bain, P. G., Baker, M., Beech, C., Bowman, C., ... & Playfer, J. R. (2003). Direct economic impact of Parkinson's disease: a research survey in the United Kingdom. Movement disorders, 18(10), 1139-1145.
Gao, C. H., Xu, L. Y., Huang, J., & Xiao, F. (2013). Effect of MOTOmed intelligent training system on balance and lower limb motor function in stroke patients. Chinese Journal of Rehabilitation Theory and Practice, 19, 725-728.
Giuffrida, J. P., Riley, D. E., Maddux, B. N., & Heldman, D. A. (2009). Clinically deployable Kinesia™ technology for automated tremor assessment. Movement disorders: official journal of the Movement Disorder Society, 24(5), 723-730.
Hackney, M. E., & Earhart, G. M. (2009). Effects of dance on movement control in Parkinson’s disease: a comparison of Argentine tango and American ballroom. Journal of rehabilitation medicine: official journal of the UEMS European Board of Physical and Rehabilitation Medicine, 41(6), 475.
Heldman, D. A., Giuffrida, J. P., Chen, R., Payne, M., Mazzella, F., Duker, A. P., ... & Espay, A. J. (2011). The modified bradykinesia rating scale for Parkinson's disease: reliability and comparison with kinematic measures. Movement Disorders, 26(10), 1859-1863.
Higgins, J. P., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., et al. (2011). The cochrane collaboration’s tool for assessing risk of bias in randomized trials. BMJ, 343
Hoehn, M. M., & Yahr, M. D. (1967). Parkinsonism: onset, progression, and mortality., v. 17, n.
Jain, S., Gourab, K., Schindler-Ivens, S., & Schmit, B. D. (2013). EEG during pedaling: evidence for cortical control of locomotor tasks. Clinical Neurophysiology, 124(2), 379-390.
Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neurosurgery & psychiatry, 79(4), 368-376.
Krzeminski, K., Kruk, B., Nazar, K., Ziemba, A. W., Cybulski, G., & Niewiadomski, W. (2000). Cardiovascular, metabolic and plasma catecholamine responses to passive and active exercises. Journal of Physiology and Pharmacology, 51(2).
L.C. Triarhou. Dopamine and Parkinson's disease. In Madame Curie Bioscience Database [Internet]. Landes Bioscience. Available from: http://www.ncbi.nlm.nih.gov/books/NBK6271/. Austin, Texas: Landes Bioscience, 2013.
Latt, M. D., Lord, S. R., Morris, J. G., & Fung, V. S. (2009). Clinical and physiological assessments for elucidating falls risk in Parkinson's disease. Movement disorders: official journal of the Movement Disorder Society, 24(9), 1280-1289.
Laupheimer, M., Hartel, S., & Schmidt, S. (2011). Forced exercise effects of motomed® training on parkinson’s-typical motor dysfunctions. Neurology and Rehabilitation, 17(5/6), 239-246.
Lee, K. S., Lee, W. H., & Hwang, S. (2011). Modified constraint-induced movement therapy improves fine and gross motor performance of the upper limb in Parkinson disease. American Journal of Physical Medicine & Rehabilitation, 90(5), 380-386.
Ludyga, S., Gronwald, T., & Hottenrott, K. (2016). Effects of high vs. low cadence training on cyclists’ brain cortical activity during exercise. Journal of Science and Medicine in Sport, 19(4), 342-347.
Morris, M. E., Martin, C. L., & Schenkman, M. L. (2010). Striding out with Parkinson disease: evidence-based physical therapy for gait disorders. Physical therapy, 90(2), 280-288.
Mostile, G., Giuffrida, J. P., Adam, O. R., Davidson, A., & Jankovic, J. (2010). Correlation between Kinesia system assessments and clinical tremor scores in patients with essential tremor. Movement disorders, 25(12), 1938-1943.
Müller, T., & Muhlack, S. (2007). Impact of endurance exercise on levodopa associated cortisol release and force increase in patients with Parkinson's disease. Aktuelle Neurologie, 34(S 2), P624.
Naito, E., Nakashima, T., Kito, T., Aramaki, Y., Okada, T., & Sadato, N. (2007). Human limb‐specific and non‐limb‐specific brain representations during kinesthetic illusory movements of the upper and lower extremities. European Journal of Neuroscience, 25(11), 3476-3487.
Nobrega, A. C., Williamson, J. W., Friedman, D. B., Araujo, C. G., & Mitchell, J. H. (1994). Cardiovascular responses to active and passive cycling movements. Medicine and science in sports and exercise, 26(6), 709-714.
Peacock, C. A., Sanders, G. J., Wilson, K. A., Fickes-Ryan, E. J., Corbett, D. B., von Carlowitz, K. P. A., & Ridgel, A. L. (2014). Introducing a multifaceted exercise intervention particular to older adults diagnosed with Parkinson’s disease: a preliminary study. Aging clinical and experimental research, 26(4), 403-409.
Richards, M., Marder, K., Cote, L., & Mayeux, R. (1994). Interrater reliability of the Unified Parkinson's Disease Rating Scale motor examination. Movement Disorders, 9(1), 89-91.
Ridgel, A. L., Muller, M. D., Kim, C. H., Fickes, E. J., & Mera, T. O. (2011). Acute effects of passive leg cycling on upper extremity tremor and bradykinesia in Parkinson's disease. The Physician and sportsmedicine, 39(3), 83-93.
Ridgel, A. L., Phillips, R. S., Walter, B. L., Discenzo, F. M., & Loparo, K. A. (2015). Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease. Frontiers in neurology, 6, 194.
Ridgel, A. L., Vitek, J. L., & Alberts, J. L. (2009). Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabilitation and neural repair, 23(6), 600-608.
Ridgel, A. L., Vitek, J. L., & Alberts, J. L. (2009). Forced, not voluntary, exercise improves motor function in Parkinson's disease patients. Neurorehabilitation and neural repair, 23(6), 600-608.
Rothwell, J. C., Obeso, J. A., Traub, M. M., & Marsden, C. D. (1983). The behaviour of the long-latency stretch reflex in patients with Parkinson's disease. Journal of Neurology, Neurosurgery & Psychiatry, 46(1), 35-44.
Shen, C., Liu, F., Yao, L., Li, Z., Qiu, L., & Fang, S. (2018). Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: a systematic review and meta-analysis. Clinical rehabilitation, 32(12), 1569-1580.
Stuckenschneider, T., Helmich, I., Raabe-Oetker, A., Froböse, I., & Feodoroff, B. (2015). Active assistive forced exercise provides long-term improvement to gait velocity and stride length in patients bilaterally affected by Parkinson's disease. Gait & Posture, 42(4), 485-490.
Vitório, R., Teixeira-Arroyo, C., Lirani-Silva, E., Barbieri, F. A., Caetano, M. J. D., Gobbi, S., ... & Teresa Bucken Gobbi, L. (2011). Effects of 6-month, multimodal exercise program on clinical and gait parameters of patients with idiopathic Parkinson's disease: a pilot study. International Scholarly Research Notices, 2011.
Wilson, K. A. (2013). Interval Active-Assisted Cycling Intervention Improves Motor Function in Individuals with Parkinson's Disease (Doctoral dissertation, Kent State University).
Zhang, J. J., Hu, X. F., & Xu, X. L. (2012). Development of lower limbs rehabilitative training robot. Chin J Rehabil Theory Pract, 18(8), 728-730.
Zhang, N., Tang, Q. P., & Xiong, Y. H. (2014). Impacts on the lower limb motor function in children with spastic cerebral palsy treated by Jin three-needle therapy combined with MOTOmed intelligent motor training. Zhongguo Zhen jiu= Chinese Acupuncture & Moxibustion, 34(7), 657-660.
Zia, S., Cody, F. W., & O'Boyle, D. J. (2002). Identification of unilateral elbow‐joint position is impaired by Parkinson's disease. Clinical Anatomy, 15(1), 23-31.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess