Differences in 30-15 IFT test performance across playing positions and categories among adult professional soccer players
DOI:
https://doi.org/10.47197/retos.v61.108413Keywords:
physical performance, men's football, game position, performance analysisAbstract
Objective: This study aims to assess the performance of professional soccer teams from different divisions and playing positions using the 30-15 intermittent fitness test (30-15 IFT). Methods: The sample comprised 84 male soccer players from first division teams A (1A) (n=21; mean age 23.5±5.2 years), first division B (1B) (n=42; mean age 23.0±5.0), and second professional division (2nd) (n=21; mean age 22.9±4.7 years). Performance was evaluated based on the final speed achieved in the 30-15 IFT (VIFT). Results: Significant differences were observed between 1A and both 1B and 2nd in VIFT (p=0.002, n2p=0.115). Additionally, differences were found between defenders and full-backs in VIFT (p=0.002, n2p=0.197). Conclusion: Performance in the 30-15 IFT varies across divisions, with 1A achieving the highest values. Moreover, full-backs demonstrated superior performance compared to defenders. These findings provide valuable insights for coaches, physical trainers, and sports scientists for optimizing training programs.
Keywords: soccer, exercise test, physical fitness, athletic performance
References
Alonso-Callejo, A., García-Unanue, J., Perez-Guerra, A., Gomez, D., Sánchez-Sánchez, J., Gallardo, L., Oliva-Lozano, J. M., & Felipe, J. L. (2022). Effect of playing position and microcycle days on the acceleration speed profile of elite football players. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-23790-w
Bangsbo, J., Mohr, M., & Krustrup, P. (2006). Physical and metabolic demands of training and match-play in the elite football player. Journal of Sports Sciences, 24(7), 665–674. https://doi.org/10.1080/02640410500482529
Bennett, H., Parfitt, G., Davison, K., & Eston, R. (2016). Validity of Submaximal Step Tests to Estimate Maximal Oxygen Uptake in Healthy Adults. Sports Medicine, 46(5), 737–750. https://doi.org/10.1007/s40279-015-0445-1
Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability part II: Recommendations for training. Sports Medicine, 41(9), 741–756. https://doi.org/10.2165/11590560-000000000-00000
Bok, D., & Foster, C. (2021). Applicability of field aerobic fitness tests in soccer: Which one to choose? Journal of Functional Morphology and Kinesiology, 6(3). https://doi.org/10.3390/jfmk6030069
Buchheit, M. (2008). THE 30-15 INTERMITTENT FITNESS TEST: ACCURACY FOR INDIVIDUALIZING INTERVAL TRAINING OF YOUNG INTERMITTENT SPORT PLAYERS. Journal of Strength and Conditioning Research, 22(2), 365–374.
Buchheit, M., Simpson, B. M., & Mendez-Villanueva, A. (2013). Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. International Journal of Sports Medicine, 34(1), 40–48. https://doi.org/10.1055/s-0032-1316363
Cherouveim, E. D., Methenitis, S. K., Simeonidis, T., Georginis, P., Tsekouras, Y. E., Biskitzi, C., Tsolakis, C., & Koulouvaris, P. (2022). Validity and Reliability of New Equations for the Prediction of Maximal Oxygen Uptake in Male and Female Elite Adolescent Rowers. Journal of Human Kinetics, 83(1), 77–86. https://doi.org/10.2478/hukin-2022-0053
Di Salvo, V., Baron, R., González-Haro, C., Gormasz, C., Pigozzi, F., & Bachl, N. (2010). Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. Journal of Sports Sciences, 28(14), 1489–1494. https://doi.org/10.1080/02640414.2010.521166
Di Salvo, V., Pigozzi, F., González-Haro, C., Laughlin, M. S., & De Witt, J. K. (2013). Match performance comparison in top English soccer leagues. International Journal of Sports Medicine, 34(6), 526–532. https://doi.org/10.1055/s-0032-1327660
Dolci, F., Hart, N. H., Kilding, A. E., Chivers, P., Piggott, B., & Spiteri, T. (2020). Physical and Energetic Demand of Soccer: A Brief Review. Strength and Conditioning Journal, 42(3), 70–77. https://doi.org/10.1519/SSC.0000000000000533
Dugdale, J. H., Arthur, C. A., Sanders, D., & Hunter, A. M. (2019). Reliability and validity of field-based fitness tests in youth soccer players. European Journal of Sport Science, 19(6), 745–756. https://doi.org/10.1080/17461391.2018.1556739
Faude, O., Koch, T., & Meyer, T. (2012). Straight sprinting is the most frequent action in goal situations in professional football. Journal of Sports Sciences, 30(7), 625–631. https://doi.org/10.1080/02640414.2012.665940
Ferraz, R. M. P., van den Tillaar, R., Pereira, A., & Marques, M. C. (2019). The effect of fatigue and duration knowledge of exercise on kicking performance in soccer players. Journal of Sport and Health Science, 8(6), 567–573. https://doi.org/10.1016/j.jshs.2016.02.001
Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., Doleshal, P., & Dodge, C. (2001). A New Approach to Monitoring Exercise Training. Journal of Strength and Conditioning Research, 15(1), 109–115. https://doi.org/10.1519/1533-4287(2001)015<0109:ANATME>2.0.CO;2
Grgic, J., Lazinica, B., & Pedisic, Z. (2021). Test–retest reliability of the 30–15 Intermittent Fitness Test: A systematic review. Journal of Sport and Health Science, 10(4), 413–418. https://doi.org/10.1016/j.jshs.2020.04.010
Guerrero-Calderón, B., Alfonso Morcillo, J., Chena, M., & Castillo-Rodríguez, A. (2022). Comparison of training and match load between metabolic and running speed metrics of professional Spanish soccer players by playing position. Biology of Sport, 933–941. https://doi.org/10.5114/biolsport.2022.110884
Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3–12. https://doi.org/10.1249/MSS.0b013e31818cb278
Hulse, M. A., Morris, J. G., Hawkins, R. D., Hodson, A., Nevill, A. M., & Nevill, M. E. (2013). A field-test battery for elite, young soccer players. International Journal of Sports Medicine, 34(4), 302–311. https://doi.org/10.1055/s-0032-1312603
Ingebrigtsen, J., Brochmann, M., Castagna, C., Bradley, P. S., Ade, J., Krustrup, P., & Holtermann, A. (2014). Relationships Between Field Performance Tests in High-Level Soccer Players. 28(4), 942–949. https://doi.org/10.1519/JSC.0b013e3182a1f861
Kellis, E., Katis, A., & Vrabas, I. S. (2006). Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scandinavian Journal of Medicine and Science in Sports, 16(5), 334–344. https://doi.org/10.1111/j.1600-0838.2005.00496.x
Konefał, M., Radzimiński, Ł., Chmura, J., Modrić, T., Zacharko, M., Padrón-Cabo, A., Sekulic, D., Versic, S., & Chmura, P. (2023). The seven phases of match status differentiate the running performance of soccer players in UEFA Champions League. Scientific Reports, 13(1), 1–8. https://doi.org/10.1038/s41598-023-33910-9
Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., Pedersen, P. K., & Bangsbo, J. (2003). The Yo-Yo intermittent recovery test: Physiological response, reliability, and validity. Medicine and Science in Sports and Exercise, 35(4), 697–705. https://doi.org/10.1249/01.MSS.0000058441.94520.32
Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(NOV), 1–12. https://doi.org/10.3389/fpsyg.2013.00863
Modric, T., Versic, S., & Sekulic, D. (2020). Aerobic fitness and game performance indicators in professional football players; playing position specifics and associations. Heliyon, 6(11). https://doi.org/10.1016/j.heliyon.2020.e05427
Modric, T., Versic, S., Sekulic, D., & Liposek, S. (2019). Analysis of the association between running performance and game performance indicators in professional soccer players. International Journal of Environmental Research and Public Health, 16(20). https://doi.org/10.3390/ijerph16204032
Pérez-Contreras, J., Villaseca-Vicuña, R., Zapata-Huenullán, C., Benavides-Roca, L., Merino-Muñoz, P., & Vidal-Maturana, F. (2022). Condición física de futbolistas adultos y jóvenes de un equipo profesional de Nicaragua. Revista Ciencias de La Actividad Física, 23(2), 1–14. https://doi.org/10.29035/rcaf.23.2.4
Scott, B. R., Hodson, J. A., Govus, A. D., & Dascombe, B. J. (2017). The 30-15 intermittent fitness test: Can it predict outcomes in field tests of anaerobic performance? Journal of Strength and Conditioning Research, 31(8), 2825–2831. https://doi.org/10.1519/JSC.0000000000001563
Silva, A. F., Alvurdu, S., Akyildiz, Z., & Clemente, F. M. (2022). Relationships of Final Velocity at 30-15 Intermittent Fitness Test and Anaerobic Speed Reserve with Body Composition, Sprinting, Change-of-Direction and Vertical Jumping Performances: A Cross-Sectional Study in Youth Soccer Players. Biology, 11(2). https://doi.org/10.3390/biology11020197
Slimani, M., & Nikolaidis, P. T. (2017). Anthropometric and physiological characteristics of male Soccer players according to their competitive level, playing position and age group: a systematic review. The Journal of Sports Medicine and Physical Fitness, November. https://doi.org/10.23736/S0022-4707.17.07950-6
Slimani, M., Znazen, H., Miarka, B., & Bragazzi, N. L. (2019). Maximum Oxygen Uptake of Male Soccer Players According to their Competitive Level, Playing Position and Age Group: Implication from a Network Meta-Analysis. Journal of Human Kinetics, 66(1), 233–245. https://doi.org/10.2478/hukin-2018-0060
Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of Soccer An Update. Sports Medicine, 35(6), 501–536. https://doi.org/10.2165/00007256-200535060-00004
Tereso, D., Gamonales, J. M., Petrica, J., Ibáñez, S. J., & Paulo, R. (2024). Avaliação da composição corporal, da potência de membros inferiores e da potência anaeróbia de jogadores de futebol: diferenças consoante a posição em campo. Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 59, 1034–1045.
Tierney, P. J., Young, A., Clarke, N. D., & Duncan, M. J. (2016). Match play demands of 11 versus 11 professional football using Global Positioning System tracking: Variations across common playing formations. Human Movement Science, 49, 1–8. https://doi.org/10.1016/j.humov.2016.05.007
Tønnessen, E., Hem, E., Leirstein, S., Haugen, T., & Seiler, S. (2013). Maximal aerobic power characteristics of male professional soccer players, 1989-2012. International Journal of Sports Physiology and Performance, 8(3), 323–329. https://doi.org/10.1123/ijspp.8.3.323
Toselli, S., Mauro, M., Grigoletto, A., Cataldi, S., Benedetti, L., Nanni, G., Di Miceli, R., Aiello, P., Gallamini, D., Fischetti, F., & Greco, G. (2022). Assessment of Body Composition and Physical Performance of Young Soccer Players: Differences According to the Competitive Level. Biology, 11(6). https://doi.org/10.3390/biology11060823
Velásquez-González, H., Peña-Troncoso, S., Hernández-Mosqueira, C., Pavez-Adasme, G., Gómez-Álvarez, N., & Sáez de Villarreal, E. (2023). Perfil de esfuerzos de alta velocidad considerando la posición de juego de futbolistas profesionales chile-nos, registrados por un dispositivo GPS: un estudio piloto (Profile of high-speed efforts considering the playing position of Chilean professional soccer players, rec-orded by a GPS device: A Pilot Study). Retos, 48, 590–597. https://doi.org/10.47197/retos.v48.97014
Winter, E. M., & Maughan, R. J. (2009). Requirements for ethics approvals. Journal of Sports Sciences, 27(10), 985–985. https://doi.org/10.1080/02640410903178344
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Retos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.