Differences in 30-15 IFT test performance across playing positions and categories among adult professional soccer players

Authors

  • Felipe Hermosilla-Palma Universidad Autónoma de Chile
  • Rodrigo Villaseca-Vicuña Facultad de Educación, Escuela de Ciencias y Tecnología Educativa, Pedagogía en Educación Física, Universidad Católica Silva Henríquez, Santiago, Chile https://orcid.org/0000-0002-2924-6931
  • Pablo Merino-Muñoz Núcleo de investigación en Ciencias de la Motricidad Humana, Universidad Adventista de Chile, Chillán, Chile
  • Nicolás Gómez-Álvarez https://orcid.org/0000-0003-3987-4189
  • Jorge Pérez-Contreras Escuela de Ciencias del Deporte, Facultad de Salud, Universidad Santo Tomas, Santiago, Chile https://orcid.org/0000-0002-2314-0204
  • Miguel Salas-Ávila Área Salud Rangers de Talca
  • Hugo Cerda-Kohler Departamento de Educación Física, Deporte y Recreación, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile https://orcid.org/0000-0002-4058-3242
  • Moacyr Portes-Junior Pedagogía en Educación Física, Facultad de Educación, Universidad Autónoma de Chile, Talca, Chile https://orcid.org/0009-0005-0705-6319
  • Esteban Aedo-Muñoz https://orcid.org/0000-0003-1544-2824

DOI:

https://doi.org/10.47197/retos.v61.108413

Keywords:

physical performance, men's football, game position, performance analysis

Abstract

Objective: This study aims to assess the performance of professional soccer teams from different divisions and playing positions using the 30-15 intermittent fitness test (30-15 IFT). Methods: The sample comprised 84 male soccer players from first division teams A (1A) (n=21; mean age 23.5±5.2 years), first division B (1B) (n=42; mean age 23.0±5.0), and second professional division (2nd) (n=21; mean age 22.9±4.7 years). Performance was evaluated based on the final speed achieved in the 30-15 IFT (VIFT). Results: Significant differences were observed between 1A and both 1B and 2nd in VIFT (p=0.002, n2p=0.115). Additionally, differences were found between defenders and full-backs in VIFT (p=0.002, n2p=0.197). Conclusion: Performance in the 30-15 IFT varies across divisions, with 1A achieving the highest values. Moreover, full-backs demonstrated superior performance compared to defenders. These findings provide valuable insights for coaches, physical trainers, and sports scientists for optimizing training programs.

Keywords: soccer, exercise test, physical fitness, athletic performance

Author Biographies

Pablo Merino-Muñoz , Núcleo de investigación en Ciencias de la Motricidad Humana, Universidad Adventista de Chile, Chillán, Chile

Bachelor of Science in Physical Activity

Nicolás Gómez-Álvarez

 

 

References

Alonso-Callejo, A., García-Unanue, J., Perez-Guerra, A., Gomez, D., Sánchez-Sánchez, J., Gallardo, L., Oliva-Lozano, J. M., & Felipe, J. L. (2022). Effect of playing position and microcycle days on the acceleration speed profile of elite football players. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-23790-w

Bangsbo, J., Mohr, M., & Krustrup, P. (2006). Physical and metabolic demands of training and match-play in the elite football player. Journal of Sports Sciences, 24(7), 665–674. https://doi.org/10.1080/02640410500482529

Bennett, H., Parfitt, G., Davison, K., & Eston, R. (2016). Validity of Submaximal Step Tests to Estimate Maximal Oxygen Uptake in Healthy Adults. Sports Medicine, 46(5), 737–750. https://doi.org/10.1007/s40279-015-0445-1

Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability part II: Recommendations for training. Sports Medicine, 41(9), 741–756. https://doi.org/10.2165/11590560-000000000-00000

Bok, D., & Foster, C. (2021). Applicability of field aerobic fitness tests in soccer: Which one to choose? Journal of Functional Morphology and Kinesiology, 6(3). https://doi.org/10.3390/jfmk6030069

Buchheit, M. (2008). THE 30-15 INTERMITTENT FITNESS TEST: ACCURACY FOR INDIVIDUALIZING INTERVAL TRAINING OF YOUNG INTERMITTENT SPORT PLAYERS. Journal of Strength and Conditioning Research, 22(2), 365–374.

Buchheit, M., Simpson, B. M., & Mendez-Villanueva, A. (2013). Repeated high-speed activities during youth soccer games in relation to changes in maximal sprinting and aerobic speeds. International Journal of Sports Medicine, 34(1), 40–48. https://doi.org/10.1055/s-0032-1316363

Cherouveim, E. D., Methenitis, S. K., Simeonidis, T., Georginis, P., Tsekouras, Y. E., Biskitzi, C., Tsolakis, C., & Koulouvaris, P. (2022). Validity and Reliability of New Equations for the Prediction of Maximal Oxygen Uptake in Male and Female Elite Adolescent Rowers. Journal of Human Kinetics, 83(1), 77–86. https://doi.org/10.2478/hukin-2022-0053

Di Salvo, V., Baron, R., González-Haro, C., Gormasz, C., Pigozzi, F., & Bachl, N. (2010). Sprinting analysis of elite soccer players during European Champions League and UEFA Cup matches. Journal of Sports Sciences, 28(14), 1489–1494. https://doi.org/10.1080/02640414.2010.521166

Di Salvo, V., Pigozzi, F., González-Haro, C., Laughlin, M. S., & De Witt, J. K. (2013). Match performance comparison in top English soccer leagues. International Journal of Sports Medicine, 34(6), 526–532. https://doi.org/10.1055/s-0032-1327660

Dolci, F., Hart, N. H., Kilding, A. E., Chivers, P., Piggott, B., & Spiteri, T. (2020). Physical and Energetic Demand of Soccer: A Brief Review. Strength and Conditioning Journal, 42(3), 70–77. https://doi.org/10.1519/SSC.0000000000000533

Dugdale, J. H., Arthur, C. A., Sanders, D., & Hunter, A. M. (2019). Reliability and validity of field-based fitness tests in youth soccer players. European Journal of Sport Science, 19(6), 745–756. https://doi.org/10.1080/17461391.2018.1556739

Faude, O., Koch, T., & Meyer, T. (2012). Straight sprinting is the most frequent action in goal situations in professional football. Journal of Sports Sciences, 30(7), 625–631. https://doi.org/10.1080/02640414.2012.665940

Ferraz, R. M. P., van den Tillaar, R., Pereira, A., & Marques, M. C. (2019). The effect of fatigue and duration knowledge of exercise on kicking performance in soccer players. Journal of Sport and Health Science, 8(6), 567–573. https://doi.org/10.1016/j.jshs.2016.02.001

Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., Doleshal, P., & Dodge, C. (2001). A New Approach to Monitoring Exercise Training. Journal of Strength and Conditioning Research, 15(1), 109–115. https://doi.org/10.1519/1533-4287(2001)015<0109:ANATME>2.0.CO;2

Grgic, J., Lazinica, B., & Pedisic, Z. (2021). Test–retest reliability of the 30–15 Intermittent Fitness Test: A systematic review. Journal of Sport and Health Science, 10(4), 413–418. https://doi.org/10.1016/j.jshs.2020.04.010

Guerrero-Calderón, B., Alfonso Morcillo, J., Chena, M., & Castillo-Rodríguez, A. (2022). Comparison of training and match load between metabolic and running speed metrics of professional Spanish soccer players by playing position. Biology of Sport, 933–941. https://doi.org/10.5114/biolsport.2022.110884

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3–12. https://doi.org/10.1249/MSS.0b013e31818cb278

Hulse, M. A., Morris, J. G., Hawkins, R. D., Hodson, A., Nevill, A. M., & Nevill, M. E. (2013). A field-test battery for elite, young soccer players. International Journal of Sports Medicine, 34(4), 302–311. https://doi.org/10.1055/s-0032-1312603

Ingebrigtsen, J., Brochmann, M., Castagna, C., Bradley, P. S., Ade, J., Krustrup, P., & Holtermann, A. (2014). Relationships Between Field Performance Tests in High-Level Soccer Players. 28(4), 942–949. https://doi.org/10.1519/JSC.0b013e3182a1f861

Kellis, E., Katis, A., & Vrabas, I. S. (2006). Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scandinavian Journal of Medicine and Science in Sports, 16(5), 334–344. https://doi.org/10.1111/j.1600-0838.2005.00496.x

Konefał, M., Radzimiński, Ł., Chmura, J., Modrić, T., Zacharko, M., Padrón-Cabo, A., Sekulic, D., Versic, S., & Chmura, P. (2023). The seven phases of match status differentiate the running performance of soccer players in UEFA Champions League. Scientific Reports, 13(1), 1–8. https://doi.org/10.1038/s41598-023-33910-9

Krustrup, P., Mohr, M., Amstrup, T., Rysgaard, T., Johansen, J., Steensberg, A., Pedersen, P. K., & Bangsbo, J. (2003). The Yo-Yo intermittent recovery test: Physiological response, reliability, and validity. Medicine and Science in Sports and Exercise, 35(4), 697–705. https://doi.org/10.1249/01.MSS.0000058441.94520.32

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(NOV), 1–12. https://doi.org/10.3389/fpsyg.2013.00863

Modric, T., Versic, S., & Sekulic, D. (2020). Aerobic fitness and game performance indicators in professional football players; playing position specifics and associations. Heliyon, 6(11). https://doi.org/10.1016/j.heliyon.2020.e05427

Modric, T., Versic, S., Sekulic, D., & Liposek, S. (2019). Analysis of the association between running performance and game performance indicators in professional soccer players. International Journal of Environmental Research and Public Health, 16(20). https://doi.org/10.3390/ijerph16204032

Pérez-Contreras, J., Villaseca-Vicuña, R., Zapata-Huenullán, C., Benavides-Roca, L., Merino-Muñoz, P., & Vidal-Maturana, F. (2022). Condición física de futbolistas adultos y jóvenes de un equipo profesional de Nicaragua. Revista Ciencias de La Actividad Física, 23(2), 1–14. https://doi.org/10.29035/rcaf.23.2.4

Scott, B. R., Hodson, J. A., Govus, A. D., & Dascombe, B. J. (2017). The 30-15 intermittent fitness test: Can it predict outcomes in field tests of anaerobic performance? Journal of Strength and Conditioning Research, 31(8), 2825–2831. https://doi.org/10.1519/JSC.0000000000001563

Silva, A. F., Alvurdu, S., Akyildiz, Z., & Clemente, F. M. (2022). Relationships of Final Velocity at 30-15 Intermittent Fitness Test and Anaerobic Speed Reserve with Body Composition, Sprinting, Change-of-Direction and Vertical Jumping Performances: A Cross-Sectional Study in Youth Soccer Players. Biology, 11(2). https://doi.org/10.3390/biology11020197

Slimani, M., & Nikolaidis, P. T. (2017). Anthropometric and physiological characteristics of male Soccer players according to their competitive level, playing position and age group: a systematic review. The Journal of Sports Medicine and Physical Fitness, November. https://doi.org/10.23736/S0022-4707.17.07950-6

Slimani, M., Znazen, H., Miarka, B., & Bragazzi, N. L. (2019). Maximum Oxygen Uptake of Male Soccer Players According to their Competitive Level, Playing Position and Age Group: Implication from a Network Meta-Analysis. Journal of Human Kinetics, 66(1), 233–245. https://doi.org/10.2478/hukin-2018-0060

Stølen, T., Chamari, K., Castagna, C., & Wisløff, U. (2005). Physiology of Soccer An Update. Sports Medicine, 35(6), 501–536. https://doi.org/10.2165/00007256-200535060-00004

Tereso, D., Gamonales, J. M., Petrica, J., Ibáñez, S. J., & Paulo, R. (2024). Avaliação da composição corporal, da potência de membros inferiores e da potência anaeróbia de jogadores de futebol: diferenças consoante a posição em campo. Retos-Nuevas Tendencias En Educacion Fisica Deporte Y Recreacion, 59, 1034–1045.

Tierney, P. J., Young, A., Clarke, N. D., & Duncan, M. J. (2016). Match play demands of 11 versus 11 professional football using Global Positioning System tracking: Variations across common playing formations. Human Movement Science, 49, 1–8. https://doi.org/10.1016/j.humov.2016.05.007

Tønnessen, E., Hem, E., Leirstein, S., Haugen, T., & Seiler, S. (2013). Maximal aerobic power characteristics of male professional soccer players, 1989-2012. International Journal of Sports Physiology and Performance, 8(3), 323–329. https://doi.org/10.1123/ijspp.8.3.323

Toselli, S., Mauro, M., Grigoletto, A., Cataldi, S., Benedetti, L., Nanni, G., Di Miceli, R., Aiello, P., Gallamini, D., Fischetti, F., & Greco, G. (2022). Assessment of Body Composition and Physical Performance of Young Soccer Players: Differences According to the Competitive Level. Biology, 11(6). https://doi.org/10.3390/biology11060823

Velásquez-González, H., Peña-Troncoso, S., Hernández-Mosqueira, C., Pavez-Adasme, G., Gómez-Álvarez, N., & Sáez de Villarreal, E. (2023). Perfil de esfuerzos de alta velocidad considerando la posición de juego de futbolistas profesionales chile-nos, registrados por un dispositivo GPS: un estudio piloto (Profile of high-speed efforts considering the playing position of Chilean professional soccer players, rec-orded by a GPS device: A Pilot Study). Retos, 48, 590–597. https://doi.org/10.47197/retos.v48.97014

Winter, E. M., & Maughan, R. J. (2009). Requirements for ethics approvals. Journal of Sports Sciences, 27(10), 985–985. https://doi.org/10.1080/02640410903178344

Downloads

Published

2024-12-01

How to Cite

Hermosilla-Palma, F., Villaseca-Vicuña, R., Merino-Muñoz, P., Gómez-Álvarez, N., Pérez-Contreras, J., Salas-Ávila, M., Cerda-Kohler, H., Portes-Junior, M., & Aedo-Muñoz, E. (2024). Differences in 30-15 IFT test performance across playing positions and categories among adult professional soccer players. Retos, 61, 415–420. https://doi.org/10.47197/retos.v61.108413

Issue

Section

Original Research Article

Most read articles by the same author(s)

1 2 3 > >>