Tanto el entrenamiento en intervalos de alta intensidad como el continuo de intensidad moderada disminuyen los niveles de fetuina-A en ratas macho alimentadas con dieta rica en grasas (Both High-Intensity Interval and Moderate-Intensity Continuous Training Decrease Fetuin-A Levels in High Fat Diet Fed Male Rats)

Autores/as

  • Citranggana Prajnya Dewi Universitas Airlangga https://orcid.org/0009-0009-0039-0735
  • Ema Qurnianingsih Universitas Airlangga
  • Lina Lukitasari Universitas Airlangga
  • Hayuris Kinandita Setiawan Universitas Airlangga
  • Zulhabri Othman Management & Sciences University
  • Lilik Herawati Faculty of Medicine, Universitas Airlangga

DOI:

https://doi.org/10.47197/retos.v56.104318

Palabras clave:

entrenamiento a intervalos, entrenamiento continuo, obesidad, resistencia a la insulina, estilo de vida saludable

Resumen

Antecedentes: La fetuína-A es una hepatocina que aumenta en la obesidad, y una dieta rica en grasas (HFD) contribuye a esta condición. La obesidad se caracteriza por el aumento en el índice de masa corporal (IMC) y se relaciona directamente con la resistencia a la insulina. Este estudio tiene como objetivo analizar la diferencia entre la eficacia del entrenamiento de intervalos de alta intensidad (HIIT) y del entrenamiento continuo de intensidad moderada (MICT) sobre la fetuína-A, la insulina, los niveles de glucosa en sangre en ayunas (FBG) y el IMC en ratas alimentadas con HFD. Métodos: Veinticuatro ratas Wistar macho se dividieron en cuatro grupos: CD (dieta estándar), HFD (sólo HFD), HFD-IT (HFD y HIIT) y HFD-CT (HFD y MICT). La HFD consistía en una dieta estándar con 2 ml/200 gramos de peso corporal adicionales de aceite de grasa de cerdo al día. En el grupo HFD-IT, se utilizó como ejercicio la natación con una carga del 9% del peso corporal, con períodos de descanso intermitentes y de corta duración, mientras que el grupo HFD-CT recibió una carga del 6% del peso corporal y natación continua. La natación se realizó cinco días a la semana durante cuatro semanas. Los niveles de fetuína-A e insulina se midieron mediante el método de ensayo inmuno-absorbente ligado a enzimas (ELISA), y los niveles de FBG se midieron con un glucómetro. Resultados: Los niveles de fetuína-A fueron significativamente inferiores en los grupos HFD-IT y HFD-CT en comparación con el grupo HFD (p<0,05). El grupo HFD-CT presentó un descenso significativo de los niveles de FBG (p<0,05), pero no así el grupo HFD-IT. No hubo diferencias en los niveles de IMC e insulina entre los grupos tras cuatro semanas de tratamiento (p>0,05). Conclusiones: El HIIT y el MICT tienen una eficacia similar en la reducción de los niveles de fetuína-A. Además, el MICT también consiguió reducir los niveles de FBG.

Palabras clave: entrenamiento a intervalos, entrenamiento continuo, dieta rica en grasas, fetuína-A, insulina, estilo de vida saludable.

Abstract. Background: Fetuin-A is a hepatokine that increases in obesity, and a high-fat diet (HFD) contributes to this condition. Obesity is characterized by increased body mass index (BMI) and is correlated to insulin resistance. This study aims to analyze the difference between High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) on fetuin-A, insulin, fasting blood glucose (FBG) levels, and BMI in HFD-fed rats. Methods: Twenty-four male Wistar rats were divided into four groups: CD (standard diet), HFD (HFD only), HFD-IT (HFD and HIIT), and HFD-CT (HFD and MICT). HFD consisted of a standard diet with an additional 2 mL/200-gram body weight of lard oil daily. In the HFD-IT group, swimming was performed with a 9% body weight load with short duration and intermittent rest periods, while the HFD-CT group was given a 6% body weight load and continuous swimming. Swimming was conducted five days a week for four weeks. Fetuin-A and insulin levels were measured using enzyme-linked immunosorbent assay (ELISA) method, and FBG levels were measured using a glucometer. Results: Fetuin-A levels were significantly lower in the HFD-IT and HFD-CT groups compared to the HFD group (p<0.05). The HFD-CT group had a significant decrease in FBG levels (p<0.05), but the HFD-IT group did not. There were no differences in BMI and insulin levels between groups after four weeks of treatment (p>0.05). Conclusion: HIIT and MICT have similar effectiveness in reducing fetuin-A levels. In addition, MICT also managed to reduce FBG levels.

Keywords: interval training, continuous training, high-fat diet, fetuin-A, insulin, healthy lifestyle.

 

Biografía del autor/a

Citranggana Prajnya Dewi, Universitas Airlangga

Master of Basic Medical Science, Faculty of Medicine

Ema Qurnianingsih, Universitas Airlangga

Department of Medical Biochemistry, Faculty of Medicine

Lina Lukitasari, Universitas Airlangga

Department of Medical Biochemistry, Faculty of Medicine

Hayuris Kinandita Setiawan, Universitas Airlangga

Department of Physiology, Faculty of Medicine

Zulhabri Othman, Management & Sciences University

Faculty of Health and Life Sciences

Lilik Herawati, Faculty of Medicine, Universitas Airlangga

Department of Physiology, Faculty of Medicine

Citas

Ahmed, S. R., Bellamkonda, S., Zilbermint, M., Wang, J., & Kalyani, R. R. (2020). Effects of the low carbohydrate, high fat diet on glycemic control and body weight in patients with type 2 diabetes: experience from a community-based cohort. BMJ Open Diabetes Research & Care, 8(1), e000980. https://doi.org/10.1136/bmjdrc-2019-000980

Ahn, M. B., Kim, S. K., Kim, S. H., Cho, W. K., Suh, J. S., Cho, K. S., Suh, B. K., & Jung, M. H. (2021). Clinical significance of the fetuin-a-to-adiponectin ratio in obese children and adolescents with diabetes mellitus. Children, 8(1155). https://doi.org/10.3390/children8121155

Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. International Journal of Environmental Research and Public Health, 18(13). https://doi.org/10.3390/ijerph18137201

Azhir, S., Alijani, E., Martinez-Huenchullan, S., Amni, H., Baker, J. S., & Farhani, F. (2022). Effects of Exercise Intensity on Soleus Muscle Myostatin and Follistatin Levels of Hyperglycaemic Rats (Efectos de la intensidad del ejercicio sobre la miostatina y folistatina del músculo sóleo de ratas hiperglicémicas). Retos, 44, 889–896. https://doi.org/10.47197/retos.v44i0.91770

Bhattacharya, S., Kundu, R., Dasgupta, S., & Bhattacharya, S. (2012). Mechanism of Lipid Induced Insulin Resistance: An Overview. Endocrinology and Metabolism, 27(1), 12. https://doi.org/10.3803/enm.2012.27.1.12

Blue, M. N. M., Smith-ryan, A. E., Trexler, E. T., & Hirsch, K. R. (2018). The effects of high intensity interval training on muscle size and quality in overweight and obese adults. Journal of Science and Medicine in Sport, 21(2), 207–212. https://doi.org/10.1016/j.jsams.2017.06.001

Boutari, C., & Mantzoros, C. S. (2022). A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism: Clinical and Experimental, 133(155217). https://doi.org/10.1016/j.metabol.2022.155217

Boutcher, S. H. (2011). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011. https://doi.org/10.1155/2011/868305

D’Amuri, A., Sanz, J. M., Capatti, E., Vece, F. Di, Vaccari, F., Lazzer, S., Zuliani, G., Nora, E. D., & Passaro, A. (2021). Effectiveness of high intensity interval training for weight loss in adults with obesity : a randomised controlled non­ inferiority trial. BMJ Open Sport & Exercise Medicine, 1–10. https://doi.org/10.1136/bmjsem-2020-001021

da Silva, G. H. C., Marques, D. C. de S., Santos, I. C., de Oliveira, F. M., Marques, M. G. de S., Júnior, R. B. dos S., Pendić, L., & Branco, B. H. M. (2022). Effects of a multidisciplinary approach on the anthropometric and body composition responses of obese adolescents (Efectos de un abordaje multidisciplinario sobre las respuestas antropométricas y de composición corporal de adolescentes obesos). Retos, 2041(46), 323–329. https://doi.org/10.47197/retos.v46.93066

Devi, A. I., Rejeki, P. S., Argarini, R., Shakila, N., Yosnengsih, Y., Ilmi, S. B. Z., Karimullah, A., Ayubi, N., & Herawati, L. (2023). Response of TNF-α Levels and Blood Glucose Levels after Acute High-Intensity Intermittent Exercise in Overweight Women. Retos, 48, 101–105. https://doi.org/10.47197/retos.v48.94305

Ennequin, G., Sirvent, P., & Whitham, M. (2019). Role of exercise-induced hepatokines in metabolic disorders. American Journal of Physiology - Endocrinology and Metabolism, 317(1), E11–E24. https://doi.org/10.1152/ajpendo.00433.2018

Etienne, Q., Lebrun, V., Komuta, M., Navez, B., Thissen, J. P., Leclercq, I. A., & Lanthier, N. (2022). Fetuin-A in Activated Liver Macrophages Is a Key Feature of Non-Alcoholic Steatohepatitis. Metabolites, 12(7). https://doi.org/10.3390/metabo12070625

Fajardo, R. J., Karim, L., Calley, V. I., & Bouxsein, M. L. (2014). A review of rodent models of type 2 diabetic skeletal fragility. Journal of Bone and Mineral Research, 29(5), 1025–1040. https://doi.org/10.1002/jbmr.2210

Flanagan, A. M., Brown, J. L., Santiago, C. A., Aad, P. Y., Spicer, L. J., & Spicer, M. T. (2008). High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. Journal of Nutritional Biochemistry, 19(8), 505–513. https://doi.org/10.1016/j.jnutbio.2007.06.005

Francis, U. A., Melford, U. E., Hope, K. O., Chikodili, A. M., Kennedy, C. O., Isaiah, O. A., Eghosa, E. I., & and, D. C. N. (2022). Obesity related alterations in kidney function and plasma cytokines: Impact of sibutramine and diet in male Wistar rats. African Journal of Pharmacy and Pharmacology, 16(10), 161–172. https://doi.org/10.5897/ajpp2022.5305

Gobatto, C. A., de Mello, M. A. R., Sibuya, C. Y., de Azevedo, J. R. M., dos Santos, L. A., & Kokubun, E. (2001). Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130(1), 21–27. https://doi.org/10.1016/s1095-6433(01)00362-2

Hall, G. Van. (2015). The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise. Sports Medicine, 45(1), 23–32. https://doi.org/10.1007/s40279-015-0394-8

Herawati, L., Lukitasari, L., Rimbun, R., Purwanto, B., & Sari, G. M. (2019). The combination of exercise and ascorbic acid decrease blood glucose level and tend to ameliorate pancreatic islets area on high carbohydrate diet rats. International Journal of Applied Pharmaceutics, 11(Special Issue 3), 20–24. https://doi.org/10.22159/ijap.2019.v11s3.M1019

Khabiri, P., Rahimi, M. R., Rashidi, I., & Nedaei, S. E. (2023). Impacts of an 8-week regimen of aged garlic extract and aerobic exercise on the levels of Fetuin-A and inflammatory markers in the liver and visceral fat tissue of obese male rats. Clinical Nutrition ESPEN, 58, 79–88. https://doi.org/10.1016/j.clnesp.2023.09.004

Kong, Z., Sun, S., Liu, M., & Shi, Q. (2016). Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women. Journal of Diabetes Research, 2016, 10–12. https://doi.org/10.1155/2016/4073618

Little, T. J., Feltrin, K. L., Horowitz, M., Meyer, J. H., Wishart, J., Chapman, I. M., & Feinle-Bisset, C. (2008). A high-fat diet raises fasting plasma CCK but does not affect upper gut motility, PYY, and ghrelin, or energy intake during CCK-8 infusion in lean men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 294(1), 45–51. https://doi.org/10.1152/ajpregu.00597.2007

Liu, J., Zhu, L., & Su, Y. (2020). Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: A meta-analysis of randomized controlled trials. Frontiers in Physiology, 11(April), 1–18. https://doi.org/10.3389/fphys.2020.00214

Liu, Z., Patil, I. Y., Jiang, T., Sancheti, H., Walsh, J. P., Stiles, B. L., Yin, F., & Cadenas, E. (2015). High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS ONE, 10(5), 1–16. https://doi.org/10.1371/journal.pone.0128274

Lundsgaard, A. M., Holm, J. B., Sjøberg, K. A., Bojsen-Møller, K. N., Myrmel, L. S., Fjære, E., Jensen, B. A. H., Nicolaisen, T. S., Hingst, J. R., Hansen, S. L., Doll, S., Geyer, P. E., Deshmukh, A. S., Holst, J. J., Madsen, L., Kristiansen, K., Wojtaszewski, J. F. P., Richter, E. A., & Kiens, B. (2019). Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 29(1), 50–63. https://doi.org/10.1016/j.cmet.2018.08.022

Malin, S. K., Del Rincon, J. P., Huang, H., & Kirwan, J. P. (2014). Exercise-induced lowering of fetuin-A may increase hepatic insulin sensitivity. Medicine and Science in Sports and Exercise, 46(11), 2085–2090. https://doi.org/10.1249/MSS.0000000000000338

Maturana, F. M., Martus, P., Zipfel, S., & NIEß, A. M. (2021). Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis. Medicine and Science in Sports and Exercise, 53(3), 559–573. https://doi.org/10.1249/MSS.0000000000002506

Meiliana, A., & Wijaya, A. (2009). Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome. The Indonesian Biomedical Journal, 1(1), 4. https://doi.org/10.18585/inabj.v1i1.79

Miller, L. J., Harikumar, K. G., Wootten, D., & Sexton, P. M. (2021). Roles of Cholecystokinin in the Nutritional Continuum. Physiology and Potential Therapeutics. Frontiers in Endocrinology, 12(June), 1–7. https://doi.org/10.3389/fendo.2021.684656

Petridou, A., Siopi, A., & Mougios, V. (2019). Exercise in the management of obesity. Metabolism: Clinical and Experimental, 92, 163–169. https://doi.org/10.1016/j.metabol.2018.10.009

Rahayu, F. K., Dwiningsih, S. R., Sa’adi, A., & Herawati, L. (2021). Effects of different intensities of exercise on folliculogenesis in mice: Which is better? Clinical and Experimental Reproductive Medicine, 48(1), 43–49. https://doi.org/10.5653/cerm.2020.03937

Ramírez-Vélez, R., García-Hermoso, A., Hackney, A. C., & Izquierdo, M. (2019). Effects of exercise training on Fetuin-a in obese, type 2 diabetes and cardiovascular disease in adults and elderly: A systematic review and Meta-analysis. Lipids in Health and Disease, 18(1), 1–11. https://doi.org/10.1186/s12944-019-0962-2

Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic–Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports, 11(4), 1–13. https://doi.org/10.3390/sports11040090

Riddell, M. C., Pooni, R., Yavelberg, L., Li, Z., Kollman, C., Brown, R. E., Li, A., & Aronson, R. (2019). Reproducibility in the cardiometabolic responses to high-intensity interval exercise in adults with type 1 diabetes. Diabetes Research and Clinical Practice, 148, 137–143. https://doi.org/10.1016/j.diabres.2019.01.003

Rising, R., & Lifshitz, F. (2006). Energy expenditures & physical activity in rats with chronic suboptimal nutrition. Nutrition and Metabolism, 3(11), 1–9. https://doi.org/10.1186/1743-7075-3-11

Riyono, A., Tinduh, D., Othman, Z., & Herawati, L. (2022). Moderate intensity continuous and interval training affect visceral fat and insulin resistance model in female rat exposed high calorie diet. Comparative Exercise Physiology, 15(5), 403–411. DOI 10.3920/CEP220013

Robinson, E., Durrer, C., Simtchouk, S., Jung, M. E., Bourne, J. E., Voth, E., Little, J. P., & Short-term, L. J. P. (2015). Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. Journal of Applied Physiology, 119(5), 508–516. https://doi.org/10.1152/japplphysiol.00334.2015

Rohmansyah, N. A., Praja, R. K., Phanpheng, Y., & Hiruntrakul, A. (2023). High-Intensity Interval Training Versus Moderate-Intensity Continuous Training for Improving Physical Health in Elderly Women. Inquiry, 60, 1–13. https://doi.org/10.1177/00469580231172870

Ruslan, S., Ilias, N. F., Azidin, R. M. F. R., Omar, M., Ghani, R. A., & Ismail, H. (2022). Effect of high intensity interval training and moderate intensity continuous training on blood pressure and blood glucose among T2DM patients. Journal of Physical Education and Sport, 22(10), 2334–2339. https://doi.org/10.7752/jpes.2022.10297

Saberi, S., Askaripour, M., Khaksari, M., Amin Rajizadeh, M., Abbas Bejeshk, M., Akhbari, M., Jafari, E., & Khoramipour, K. (2024). Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon, 10(6), e27749. https://doi.org/10.1016/j.heliyon.2024.e27749

Schjerve, I. E., Tyldum, G. A., Tjønna, A. E., Stølen, T., Loennechen, J. P., Hansen, H. E. M., Haram, P. M., Heinrich, G., Bye, A., Najjar, S. M., Smith, G. L., Slørdahl, S. A., Kemi, O. J., & Wisløff, U. (2008). Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science, 115(9), 283–293. https://doi.org/10.1042/CS20070332

Singh, M., Sharma, P. K., Garg, V. K., Mondal, S. C., Singh, A. K., & Kumar, N. (2012). Role of fetuin-A in atherosclerosis associated with diabetic patients. Journal of Pharmacy and Pharmacology, 64(12), 1703–1708. https://doi.org/10.1111/j.2042-7158.2012.01561.x

Syamsudin, F., Qurnianingsih, E., Kinanti, R. G., Vigriawan, G. E., Putri, E. A. C., Rif’at Fawaid As’ad, M., Callixte, C., & Herawati, L. (2023). Short Term HIIT increase VO2max, but can’t decrease Free Fatty Acids in Women Sedentary Lifestyle. Retos, 50, 380–386. https://doi.org/10.47197/retos.v50.99573

Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., Loennechen, J. P., Al-Share, Q. Y., Skogvoll, E., Slørdahl, S. A., Kemi, O. J., Najjar, S. M., & Wisløff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354. https://doi.org/10.1161/CIRCULATIONAHA.108.772822

Vigriawan, G. E., Putri, E. A. C., Rejeki, P. S., Qurnianingsih, E., Kinanti, R. G., Mohamed, M. N. A., & Herawati, L. (2022). High-intensity interval training improves physical performance without C-reactive protein (CRP) level alteration in overweight sedentary women. Journal of Physical Education and Sport, 22(2), 442–447. https://doi.org/10.7752/jpes.2022.02055

Wewege, M., Berg, R. Van Den, Ward, R. E., & Keech, A. (2017). The effects of high-intensity interval training vs . moderate-intensity continuous training on body composition in overweight and obese adults : a systematic review and meta-analysis. Obesity Reviews, 18(June), 635–646. https://doi.org/10.1111/obr.12532

Wharton, S., Lau, D. C. W., Vallis, M., Sharma, A. M., Biertho, L., Campbell-Scherer, D., Adamo, K., Alberga, A., Bell, R., Boulé, N., Boyling, E., Brown, J., Calam, B., Clarke, C., Crowshoe, L., Divalentino, D., Forhan, M., Freedhoff, Y., Gagner, M., … Wicklum, S. (2020). Obesity in adults: A clinical practice guideline. Canadian Medical Association Journal, 192(31), E875–E891. https://doi.org/10.1503/cmaj.191707

Widianingsih, W., Salamah, N., & Maulida, F. Q. (2009). The effects of ethanolic extract of green algae (ulva lactuca l.) on blood cholesterol levels in male rats induced by a high fat diet. Jurnal Kedokteran Dan Kesehatan Indonesia, 7(5), 181–186. https://doi.org/10.20885/jkki.vol7.iss5.art3

World Health Organization. (2022). Obesity in the WHO Region. https://cdn.who.int/media/docs/librariesprovider2/euro-health-topics/food-safety/europeanobesityreport-2022-fs-(1).pdf?sfvrsn=fcf36c2c_5&download=true

Yang, Z., Mi, J., Wang, Y., Xue, L., Liu, J., Fan, M., Zhang, D., Wang, L., Qian, H., & Li, Y. (2021). Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition, 89, 111230. https://doi.org/10.1016/j.nut.2021.111230

Zanetti, M. M., Lima e Silva, L. de, Sena, M. A. de B., Neves, E. B., Ferreira, P. F., Keese, F., Nunes, R. A. M., & Fortes, M. D. S. R. (2022). Correlation between anthropometric parameters and cardiometabolic risk in military (Correlación entre parámetros antropométricos y riesgo cadiometabólico en militares). Retos, 44, 1099–1103. https://doi.org/10.47197/retos.v44i0.91559

Zhang, S. F., Zhang, Y., Li, B., & Chen, N. (2018). Physical inactivity induces the atrophy of skeletal muscle of rats through activating AMPK/FoxO3 signal pathway. European Review for Medical and Pharmacological Sciences, 22(1), 199–209. https://doi.org/10.26355/eurrev-201801-14118

Descargas

Publicado

2024-04-23

Cómo citar

Dewi, C. P., Qurnianingsih, E., Lukitasari, L., Setiawan, H. K., Othman, Z., & Herawati, L. (2024). Tanto el entrenamiento en intervalos de alta intensidad como el continuo de intensidad moderada disminuyen los niveles de fetuina-A en ratas macho alimentadas con dieta rica en grasas (Both High-Intensity Interval and Moderate-Intensity Continuous Training Decrease Fetuin-A Levels in High Fat Diet Fed Male Rats). Retos, 56, 208–215. https://doi.org/10.47197/retos.v56.104318

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a