A esteira tem um efeito mais benéfico do que o ciclismo na perda de gordura através da secreção de miocinas em mulheres obesas

Autores

  • Hayuris Kinandita Setiawan Physiology Division, Department of Medical Physiology and Biochemistry, Universitas Airlangga
  • Purwo Sri Rejeki Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-6285-4058
  • Adi Pranoto Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-4080-9245
  • Kristanti Wanito Wigati Physiology Division, Department of Medical Physiology and Biochemistry, Universitas Airlangga
  • Muhammad Muhammad Department of Sport Coaching Education, Faculty of Sport Science and Health, Universitas Negeri Surabaya
  • Ilham Rahmanto Medical Program, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0003-0916-5824

DOI:

https://doi.org/10.47197/retos.v55.103483

Palavras-chave:

Aerobic exercise, interleukin 6, irisin, obesity, metabolism

Resumo

A obesidade é uma condição caracterizada pelo acúmulo excessivo de gordura corporal além dos limites normais. A irisina e a IL-6 são miocinas que têm a função de converter tecido adiposo branco em tecido adiposo marrom, resultando em termogênese que induz gasto energético e tem implicações na redução do acúmulo excessivo de gordura. Este estudo tem como objetivo demonstrar a resposta do exercício ergonômico em esteira e bicicleta de intensidade moderada na perda de gordura e aumento da secreção de miocinas em mulheres adolescentes obesas. Um total de 30 mulheres obesas preencheram os critérios com índice de massa corporal (IMC) de 30,02 ± 2,97 kg/m2 e idade de 21,27 ± 1,31 anos. Eles foram recrutados para o estudo e realizaram uma única sessão de exercícios aeróbicos em bicicleta ergométrica (AEEG) e exercícios aeróbicos em esteira. (ATEG) por 45 min. Medição de miocinas, ou seja, irisina e IL-6, por ensaio imunoenzimático (ELISA) em todas as amostras. A análise estatística foi realizada por meio do teste ANOVA unidirecional e do teste post hoc HSD de Tukey com significância ao nível de 5%. Os resultados mostraram que os níveis médios de irisina pós-exercício foram 72,82±42,96 ng/mL no CTLG, 282,50±75,96 ng/mL no AEEG, 488,14±61,30 ng/mL no ATEG e p = 0,000. Os níveis médios de IL-6 pós-exercício foram 51,09±15,68 pg/mL no CTLG, 58,94±3,62 pg/mL no AEEG, 129,29±52,65 pg/mL no ATEG e p = 0,000. Os ∆ FATs médios foram -0,02 ± 0,34% no CTLG, -0,35 ± 0,19% no AEEG, -0,46 ± 0,18 pg/mL no ATEG e p = 0,002. Ambas as intervenções de exercício aumentaram consistentemente os níveis de irisina, enquanto os níveis de IL-6 aumentaram apenas com exercícios aeróbicos em esteira. Da mesma forma, a gordura corporal só diminuiu após uma sessão de exercícios aeróbicos em esteira em comparação com exercícios aeróbicos em uma bicicleta ergonômica.

Palavras-chave: Exercício aeróbico, interleucina 6, irisina, obesidade, metabolismo

Referências

Archundia-Herrera, C., Macias-Cervantes, M., Ruiz-Muñoz, B., Vargas-Ortiz, K., Kornhauser, C., & Perez-Vazquez, V. (2017). Muscle irisin response to aerobic vs HIIT in overweight female adolescents. Diabetology and metabolic syndrome, 9, 101. https://doi.org/10.1186/s13098-017-0302-5.

Arias-Loste, M. T., Ranchal, I., Romero-Gómez, M., & Crespo, J. (2014). Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. International journal of molecular sciences, 15(12), 23163–23178. https://doi.org/10.3390/ijms151223163.

Balakrishnan, R., & Thurmond, D. C. (2022). Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. International journal of molecular sciences, 23(9), 4636. https://doi.org/10.3390/ijms23094636.

Basic Health Research. 2018. Basic Health Research National Report. Jakarta: Kemenkes RI. Available at: http://www.kesmas.kemkes.go.id.

Bongartz, U., Hochmann, U., Grube, B., Uebelhack, R., Alt, F., Erlenbeck, C., Peng, L. V., Chong, P. W., & De Costa, P. (2022). Flaxseed Mucilage (IQP-LU-104) Reduces Body Weight in Overweight and Moderately Obese Individuals in a 12-week, Three-Arm, Double-Blind, Randomized, and Placebo-Controlled Clinical Study. Obesity facts, 15(3), 395–404. https://doi.org/10.1159/000522082.

Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., Rasbach, K. A., Boström, E. A., Choi, J. H., Long, J. Z., Kajimura, S., Zingaretti, M. C., Vind, B. F., Tu, H., Cinti, S., Højlund, K., Gygi, S. P., & Spiegelman, B. M. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481(7382), 463–468. https://doi.org/10.1038/nature10777.

Briken, S., Rosenkranz, S. C., Keminer, O., Patra, S., Ketels, G., Heesen, C., Hellweg, R., Pless, O., Schulz, K. H., & Gold, S. M. (2016). Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. Journal of neuroimmunology, 299, 53–58. https://doi.org/10.1016/j.jneuroim.2016.08.007.

Chireh, S., Alizadeh, R., & Moradi, L. (2018). The effect of 3 weeks ergometer cycling training with and without vascular occlusion on Plasma concentration of Irisin and PGC-1α in healthy men. Sport Physiology and Management Investigations, 9(4), 95-105.

Chooi, Y. C., Ding, C., & Magkos, F. (2019). The epidemiology of obesity. Metabolism: clinical and experimental, 92, 6–10. https://doi.org/10.1016/j.metabol.2018.09.005.

Colpitts, B. H., Rioux, B. V., Eadie, A. L., Brunt, K. R., & Sénéchal, M. (2022). Irisin response to acute moderate intensity exercise and high intensity interval training in youth of different obesity statuses: A randomized crossover trial. Physiological reports, 10(4), e15198. https://doi.org/10.14814/phy2.15198.

Costello, J. T., Rendell, R. A., Furber, M., Massey, H. C., Tipton, M. J., Young, J. S., & Corbett, J. (2018). Effects of acute or chronic heat exposure, exercise and dehydration on plasma cortisol, IL-6 and CRP levels in trained males. Cytokine, 110, 277–283. https://doi.org/10.1016/j.cyto.2018.01.018.

Cullen, T., Thomas, A. W., Webb, R., & Hughes, M. G. (2015). The relationship between interleukin-6 in saliva, venous and capillary plasma, at rest and in response to exercise. Cytokine, 71(2), 397–400. https://doi.org/10.1016/j.cyto.2014.10.011.

Deveci, G., & Şanlıer, N. (2018). Sitting time, walking, moderate and intensity exercise may effect serum il-4 and il-6 levels in colorectal cancer patients. Clinical Nutrition, 37, S83-S84. https://doi.org/1016/j.clnu.2018.06.1330.

Dianatinasab, A., Koroni, R., Bahramian, M., Bagheri-Hosseinabadi, Z., Vaismoradi, M., Fararouei, M., & Amanat, S. (2020). The effects of aerobic, resistance, and combined exercises on the plasma irisin levels, HOMA-IR, and lipid profiles in women with metabolic syndrome: A randomized controlled trial. Journal of exercise science and fitness, 18(3), 168–176. https://doi.org/10.1016/j.jesf.2020.06.004.

Durrer Schutz, D., Busetto, L., Dicker, D., Farpour-Lambert, N., Pryke, R., Toplak, H., Widmer, D., Yumuk, V., & Schutz, Y. (2019). European Practical and Patient-Centred Guidelines for Adult Obesity Management in Primary Care. Obesity facts, 12(1), 40–66. https://doi.org/10.1159/000496183.

Ellulu, M. S., Patimah, I., Khaza'ai, H., Rahmat, A., & Abed, Y. (2017). Obesity and inflammation: the linking mechanism and the complications. Archives of medical science : AMS, 13(4), 851–863. https://doi.org/10.5114/aoms.2016.58928.

Francisco, V., Pino, J., Gonzalez-Gay, M. A., Mera, A., Lago, F., Gómez, R., Mobasheri, A., & Gualillo, O. (2018). Adipokines and inflammation: is it a question of weight?. British journal of pharmacology, 175(10), 1569–1579. https://doi.org/10.1111/bph.14181.

Gadde, K. M., Martin, C. K., Berthoud, H. R., & Heymsfield, S. B. (2018). Obesity: Pathophysiology and Management. Journal of the American College of Cardiology, 71(1), 69–84. https://doi.org/10.1016/j.jacc.2017.11.011.

Galgani, J. E., Moro, C., & Ravussin, E. (2012). Metabolic flexibility and insulin resistance. American Journal of Physiology-Endocrinology and Metabolism, 295(5), E1009-E1017. https://doi.org/10.1152/ajpendo.00240.2008.

Gan, Z., Wang, J., Wang, C., Zhu, Y., Yang, Y., Li, L., & Zhang, M. (2018). Irisin in human serum is elevated in response to acute endurance exercise. Medicine and Science in Sports and Exercise, 50(3), 526-534. https://doi.org/10.1249/MSS.0000000000001476.

Hawley, N. L., & McGarvey, S. T. (2015). Obesity and diabetes in Pacific Islanders: the current burden and the need for urgent action. Current diabetes reports, 15(5), 29. https://doi.org/10.1007/s11892-015-0594-5.

Hojman, P., Brolin, C., Nørgaard-Christensen, N., Dethlefsen, C., Lauenborg, B., Olsen, C. K., Åbom, M. M., Krag, T., Gehl, J., & Pedersen, B. K. (2019). IL-6 release from muscles during exercise is stimulated by lactate-dependent protease activity. American journal of physiology. Endocrinology and metabolism, 316(5), E940–E947. https://doi.org/10.1152/ajpendo.00414.2018.

Hruby, A., & Hu, F. B. (2015). The Epidemiology of Obesity: A Big Picture. PharmacoEconomics, 33(7), 673–689. https://doi.org/10.1007/s40273-014-0243-x.

Huh J. Y. (2018). The role of exercise-induced myokines in regulating metabolism. Archives of pharmacal research, 41(1), 14–29. https://doi.org/10.1007/s12272-017-0994-y.

Huh, J. Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I. I., Filippaios, A., Panagiotou, G., Park, K. H., & Mantzoros, C. S. (2014). Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. The Journal of clinical endocrinology and metabolism, 99(11), E2154–E2161. https://doi.org/10.1210/jc.2014-1437.

Jürimäe, J., Purge, P., Remmel, L., Ereline, J., Kums, T., Kamandulis, S., Brazaitis, M., Venckunas, T., & Pääsuke, M. (2023). Changes in irisin, inflammatory cytokines and aerobic capacity in response to three weeks of supervised sprint interval training in older men. The Journal of sports medicine and physical fitness, 63(1), 162–169. https://doi.org/10.23736/S0022-4707.22.13949-6.

Kim, H. J., Lee, H. J., So, B., Son, J. S., Yoon, D., & Song, W. (2016). Effect of aerobic training and resistance training on circulating irisin level and their association with change of body composition in overweight/obese adults: a pilot study. Physiological research, 65(2), 271–279. https://doi.org/10.33549/physiolres.932997.

Kistner, T. M., Pedersen, B. K., & Lieberman, D. E. (2022). Interleukin 6 as an energy allocator in muscle tissue. Nature metabolism, 4(2), 170–179. https://doi.org/10.1038/s42255-022-00538-4.

Kwon, J. H., Moon, K. M., & Min, K. W. (2020). Exercise-Induced Myokines can Explain the Importance of Physical Activity in the Elderly: An Overview. Healthcare (Basel, Switzerland), 8(4), 378. https://doi.org/10.3390/healthcare8040378.

Lang Lehrskov, L., Lyngbaek, M. P., Soederlund, L., Legaard, G. E., Ehses, J. A., Heywood, S. E., Wewer Albrechtsen, N. J., Holst, J. J., Karstoft, K., Pedersen, B. K., & Ellingsgaard, H. (2018). Interleukin-6 Delays Gastric Emptying in Humans with Direct Effects on Glycemic Control. Cell metabolism, 27(6), 1201–1211.e3. https://doi.org/10.1016/j.cmet.2018.04.008.

Leal, L. G., Lopes, M. A., & Batista, M. L., Jr (2018). Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Frontiers in physiology, 9, 1307. https://doi.org/10.3389/fphys.2018.01307.

Lehrskov, L. L., & Christensen, R. H. (2019). The role of interleukin-6 in glucose homeostasis and lipid metabolism. Seminars in immunopathology, 41(4), 491–499. https://doi.org/10.1007/s00281-019-00747-2.

Li, J., Yi, X., Li, T., Yao, T., Li, D., Hu, G., Ma, Y., Chang, B., & Cao, S. (2022). Effects of exercise and dietary intervention on muscle, adipose tissue, and blood IRISIN levels in obese male mice and their relationship with the beigeization of white adipose tissue. Endocrine connections, 11(3), e210625. https://doi.org/10.1530/EC-21-0625.

Lin, W., Song, H., Shen, J., Wang, J., Yang, Y., Yang, Y., Cao, J., Xue, L., Zhao, F., Xiao, T., & Lin, R. (2023). Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Frontiers in physiology, 14, 1110926. https://doi.org/10.3389/fphys.2023.1110926.

Luna, L. A., Jr, Bachi, A. L., Novaes e Brito, R. R., Eid, R. G., Suguri, V. M., Oliveira, P. W., Gregorio, L. C., & Vaisberg, M. (2011). Immune responses induced by Pelargonium sidoides extract in serum and nasal mucosa of athletes after exhaustive exercise: modulation of secretory IgA, IL-6 and IL-15. Phytomedicine : international journal of phytotherapy and phytopharmacology, 18(4), 303–308. https://doi.org/10.1016/j.phymed.2010.08.003.

Merawati, D., Sugiharto, Susanto, H., Taufiq, A., Pranoto, A., Amelia, D., & Rejeki, P. S. (2023). Dynamic of irisin secretion change after moderate-intensity chronic physical exercise on obese female. Journal of basic and clinical physiology and pharmacology, 34(4), 539–547. https://doi.org/10.1515/jbcpp-2023-0041.

Nara, H., and Watanabe, R. 2021. Anti-Inflammatory Effect of Muscle-Derived Interleukin-6 and Its Involvement in Lipid Metabolism. International journal of molecular sciences, 22(18), 9889. https://doi.org/10.3390/ijms22189889.

Newlin, M. K., Williams, S., McNamara, T., Tjalsma, H., Swinkels, D. W., & Haymes, E. M. (2012). The effects of acute exercise bouts on hepcidin in women. International journal of sport nutrition and exercise metabolism, 22(2), 79–88. https://doi.org/10.1123/ijsnem.22.2.79.

Nishii, K., Aizu, N., & Yamada, K. (2023). Review of the health-promoting effects of exercise and the involvement of myokines. Fujita medical journal, 9(3), 171–178. https://doi.org/10.20407/fmj.2022-020.

Park, K. S., & Nickerson, B. S. (2022). Aerobic exercise is an independent determinant of levels of inflammation and oxidative stress in middle-aged obese females. Journal of exercise rehabilitation, 18(1), 43–49. https://doi.org/10.12965/jer.2142724.352.

Perakakis, N., Triantafyllou, G. A., Fernández-Real, J. M., Huh, J. Y., Park, K. H., Seufert, J., & Mantzoros, C. S. (2017). Physiology and role of irisin in glucose homeostasis. Nature reviews. Endocrinology, 13(6), 324–337. https://doi.org/10.1038/nrendo.2016.221.

Powell-Wiley, T. M., Poirier, P., Burke, L. E., Després, J. P., Gordon-Larsen, P., Lavie, C. J., Lear, S. A., Ndumele, C. E., Neeland, I. J., Sanders, P., St-Onge, M. P., & American Heart Association Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular and Stroke Nursing; Council on Clinical Cardiology; Council on Epidemiology and Prevention; and Stroke Council (2021). Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation, 143(21), e984–e1010. https://doi.org/10.1161/CIR.0000000000000973.

Pranoto, A., Cahyono, M. B. A., Yakobus, R., Izzatunnisa, N., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Effendi, W. I., Wungu, C. D. K., and Yamaoka, Y. (2023a). Long-Term Resistance-Endurance Combined Training Reduces Pro-Inflammatory Cytokines in Young Adult Females with Obesity. Sports (Basel, Switzerland), 11(3), 54. https://doi.org/10.3390/sports11030054.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., and Yamaoka, Y. (2023b). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.

Pranoto, A., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Nindya, T. S., Lestari, B., & Halim, S. (2024). The role of long-term combination training in reducing and maintaining of body fat in obese young adult women. Retos, 53, 139–146. https://doi.org/10.47197/retos.v53.102460.

Ren, C., Zhu, J., Shen, T., Song, Y., Tao, L., Xu, S., Zhao, W., & Gao, W. (2022). Comparison Between Treadmill and Bicycle Ergometer Exercises in Terms of Safety of Cardiopulmonary Exercise Testing in Patients With Coronary Heart Disease. Frontiers in cardiovascular medicine, 9, 864637. https://doi.org/10.3389/fcvm.2022.864637.

Rejeki, P.S., Pranoto, A., Prasetya, R.E., & Sugiharto. (2021). Irisin serum increasing pattern is higher at moderate-intensity continuous exercise than at moderate-intensity interval exercise in obese females. Comparative Exercise Physiology, 17(5), 475–484. https://doi.org/10.3920/CEP200050.

Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel, Switzerland), 11(4), 90. https://doi.org/10.3390/sports11040090.

Salamat, K.M., Azarbayjani, M.A., Yusuf, A., & Dehghan, F. (2016). The response of pre-inflammatory cytokines factors to different exercises (endurance, resistance, concurrent) in overweight men. Alexandria Journal of Medicine, 52(4), 367-370. https://doi.org/10.1016/j.ajme.2015.12.007.

Sari, A. R., Risdayanto, R. D., Pradipta, M. H., Qorni, U. A., Rejeki, P. S., Argarini, R., Halim, S., & Pranoto, A. (2024). Impact of Time-Resricted Feeding and Aerobic Exercise Combination on Promotes Myokine Levels and Improve Body Composition in Obese Women. Retos, 53, 1–10. https://doi.org/10.47197/retos.v53.102429.

Severinsen, M. C. K., & Pedersen, B. K. (2020). Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocrine reviews, 41(4), 594–609. https://doi.org/10.1210/endrev/bnaa016.

Soujanya, K. V., & Jayadeep, A. P. (2022). Obesity-associated biochemical markers of inflammation and the role of grain phytochemicals. Journal of food biochemistry, 46(9), e14257. https://doi.org/10.1111/jfbc.14257.

Tsuchiya, Y., Ando, D., Takamatsu, K., & Goto, K. (2015). Resistance exercise induces a greater irisin response than endurance exercise. Metabolism: clinical and experimental, 64(9), 1042–1050. https://doi.org/10.1016/j.metabol.2015.05.010.

van der Vaart, J. I., Boon, M. R., & Houtkooper, R. H. (2021). The Role of AMPK Signaling in Brown Adipose Tissue Activation. Cells, 10(5), 1122. https://doi.org/10.3390/cells10051122.

Vekic, J., Zeljkovic, A., Stefanovic, A., Jelic-Ivanovic, Z., & Spasojevic-Kalimanovska, V. (2019). Obesity and dyslipidemia. Metabolism: clinical and experimental, 92, 71–81. https://doi.org/10.1016/j.metabol.2018.11.005.

Waseem, R., Shamsi, A., Mohammad, T., Hassan, M. I., Kazim, S. N., Chaudhary, A. A., Rudayni, H. A., Al-Zharani, M., Ahmad, F., & Islam, A. (2022). FNDC5/Irisin: Physiology and Pathophysiology. Molecules (Basel, Switzerland), 27(3), 1118. https://doi.org/10.3390/molecules27031118.

Wedell-Neergaard, A. S., Lang Lehrskov, L., Christensen, R. H., Legaard, G. E., Dorph, E., Larsen, M. K., Launbo, N., Fagerlind, S. R., Seide, S. K., Nymand, S., Ball, M., Vinum, N., Dahl, C. N., Henneberg, M., Ried-Larsen, M., Nybing, J. D., Christensen, R., Rosenmeier, J. B., Karstoft, K., Pedersen, B. K., et al. (2019). Exercise-Induced Changes in Visceral Adipose Tissue Mass Are Regulated by IL-6 Signaling: A Randomized Controlled Trial. Cell metabolism, 29(4), 844–855.e3. https://doi.org/10.1016/j.cmet.2018.12.007.

Whillier S. (2020). Exercise and Insulin Resistance. Advances in experimental medicine and biology, 1228, 137–150. https://doi.org/10.1007/978-981-15-1792-1_9.

Windarti, N., Hlaing, S. W., & Kakinaka, M. (2019). Obesity Kuznets curve: international evidence. Public health, 169, 26–35. https://doi.org/10.1016/j.puhe.2019.01.004.

World Health Organization (WHO). (2012). A comprehensive global monitoring framework including indicators and a set of voluntary global targets for the prevention and control of noncommunicable diseases. Geneva: WHO Press. Available at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

World Health Organization (WHO). (2016). Obesity and overweight. Geneva: WHO Press. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/.

Yaya, S., & Ghose, B. (2019). Trend in overweight and obesity among women of reproductive age in Uganda: 1995-2016. Obesity science and practice, 5(4), 312–323. https://doi.org/10.1002/osp4.351.

Zhu, X., Zhang, F., Chen, J., Zhao, Y., Ba, T., Lin, C., Lu, Y., Yu, T., Cai, X., Zhang, L., & Ji, L. (2022). The Effects of Supervised Exercise Training on Weight Control and Other Metabolic Outcomes in Patients With Type 2 Diabetes: A Meta-Analysis. International journal of sport nutrition and exercise metabolism, 32(3), 186–194. https://doi.org/10.1123/ijsnem.2021-0168.

Downloads

Publicado

2024-03-27

Como Citar

Setiawan, H. K., Rejeki, P. S., Pranoto, A., Wigati, K. W., Muhammad, M., & Rahmanto, I. (2024). A esteira tem um efeito mais benéfico do que o ciclismo na perda de gordura através da secreção de miocinas em mulheres obesas. Retos, 55, 203–211. https://doi.org/10.47197/retos.v55.103483

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>