Metal artifact reduction in post-operative spinal imaging using image acquisition protocol in multidetector computed tomography scans. Cohort study
DOI:
https://doi.org/10.23938/ASSN.0282Keywords:
Artifact. CT scan. Screw. Lumbar spine.Abstract
Background. In postoperative patients with metallic implants, CT scans can become less effective due to metal-related artifacts. The purpose of our study was to evaluate the effectiveness of a specific metal artifact reduction image protocol, in order to reduce the metal artifact caused by titanium pedicular screws in patients undergoing lumbar pathology by lumbar fusion. This enables surgeons to make an accurate diagnosis of the exact placement of inserted pedicle screws, making this the preferred image modality for assessing screw position after surgery.
Methods. In the first part of the study, CT scans were performed on 23 patients (103 titanium alloy pedicle screws) undergoing a lumbar instrumented fusion for treatment for degenerative disease with a standard image acquisition protocol evaluating the possible overdimension caused by the artifact. In the second part, a prospective study was performed using 64-slice multidetector-row computed tomography (MDCT) on 18 patients (104 titanium alloy pedicle screws) undergoing a lumbar instrumented fusion using a specific image acquisition protocol.
Results. Our results show that in the sequential CT scan group, mean overdimension (on each side) due to brightness was1.045 mm (SD 0.45). In the 64-slice multichannel CT group, mean overdimension (on each side) due to brightness was0.005 mm at the proximal part of the screw and0.025 mm at the distal part of the screw.
Conclusions. The use of a specific metal artifact reduction image protocol in MDCT produces a minimal artifact following lumbar fusion with pedicle screws.
Downloads
References
1. WEINSTEIN JN, LURIE JD, OLSON PR. United States' trends and regional variations in lumbar spine surgery: 1992-2003. Spine 2006; 31: 2707-2714.
https://doi.org/10.1097/01.brs.0000248132.15231.fe
2. MOHANTY SP, BHAT SN, ISHWARA-KEERTHI C. The effect of posterior instrumentation of the spine on canal dimensions and neurological recovery in thoracolumbar and lumbar burst fractures. Musculoskelet Surg 2011; 95: 101-106.
https://doi.org/10.1007/s12306-011-0111-1
3. KWON H, KIM KS, CHUN YM, WU HG, CARLSON JN, PARK JM et al. Evaluation of a commercial orthopedic metal artifact reduction tool in radiation therapy of head and neck patients. Br J Radiol 2015; 20: 201-212.
4. JEONG S1, KIM SH, HWANG EJ, SHIN CI, HAN JK, CHOI BI. Usefulness of a metal artifact reduction algorithm for orthopedic implants in abdominal CT: phantom and clinical study results. Am J Roentgenol 2015; 204: 307-317.
https://doi.org/10.2214/AJR.14.12745
5. GERTZBEIN SD1, ROBBINS SE. Accuracy of pedicular screw placement in vivo. Spine 1990; 15: 11-14.
https://doi.org/10.1097/00007632-199001000-00004
6. WALLACE AB, GOERGEN SK, SCHICK D. Multidetector CT dose: clinical practice improvement strategies from a successful optimization program. J Am Coll Radiol 2010; 7: 614-624.
https://doi.org/10.1016/j.jacr.2010.03.015
7. STRADIOTTI P, CURTI A, CASTELLAZI G, ZERBI A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J 2009; 18 suppl 1: 102-108.
https://doi.org/10.1007/s00586-009-0998-5
8. LEE S, KIM HJ, CHOI BK. A pragmatic protocol for reduction in the metal artifact and radiation dose in multislice computed tomography of the spine: cadaveric evaluation after cervical pedicle screw placement. J Comput Assist Tomogr 2007; 31: 635-641.
https://doi.org/10.1097/01.rct.0000250117.18080.d8
9. MOON SG, HONG SH, CHOI JY. Metal artifact reduction by the alteration of technical factors in multidetector computed tomography: a 3-dimensional quantitative assessment. J Comput Assist Tomogr 2006; 32: 630-633.
https://doi.org/10.1097/RCT.0b013e3181568b27
10. ELLIOTT MJ, SLAKEY JB. CT provides precise size assessment of implanted titanium alloy pedicle screws. Clin Orthop Relat Res 2014; 472: 1605-1609.
https://doi.org/10.1007/s11999-014-3494-0
11. HARAMATI N, STARON RB, MAZEL-SPERLING K. CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 1994; 18: 429-434.
https://doi.org/10.1016/0895-6111(94)90080-9
12. WANG Y, QIAN B, LI B, QIN G, ZHOU Z, QIU Y et al. Metal artifacts reduction using monochromatic images from spectral CT: evaluation of pediclescrews in patients with scoliosis. Eur J Radiol 2013; 82: 360-366.
https://doi.org/10.1016/j.ejrad.2013.02.024
13. LIU PT, PAVLICEK WP, PETER MB, SPANGEHL MJ, ROBERTS CC, PADEN RG. Metal artifact reduction image reconstruction algorithm for CT of implanted metal orthopedic devices: a work in progress. Skeletal Radiol 2009; 38: 797-802.
https://doi.org/10.1007/s00256-008-0630-5
14. LI JY, POW EH, ZHENG LW, MA L, KWONG DL, CHEUNG LK. Quantitative analysis of titanium-induced artifacts and correlated factors during micro-CT scanning. Clin Oral Implants Res 2014; 25: 506-510.
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Anales del Sistema Sanitario de Navarra

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
La revista Anales del Sistema Sanitario de Navarra es publicada por el Departamento de Salud del Gobierno de Navarra (España), quien conserva los derechos patrimoniales (copyright ) sobre el artículo publicado y favorece y permite la difusión del mismo bajo licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (CC BY-SA 4.0). Esta licencia permite copiar, usar, difundir, transmitir y exponer públicamente el artículo, siempre que siempre que se cite la autoría y la publicación inicial en Anales del Sistema Sanitario de Navarra, y se distinga la existencia de esta licencia de uso.


