O efeito do vo2max na saturação muscular de oxigénio (SMO2) em atletas universitários de badminton

Autores

  • Jajat Darajat Kusumah Negara Universitas Pendidikan Indonesia
  • Nuryadi Nuryadi Universitas Pendidikan Indonesia
  • Helmy Firmansyah Universitas Pendidikan Indonesia https://orcid.org/0000-0002-3906-5093
  • Agus Gumilar Universitas Pendidikan Indonesia https://orcid.org/0000-0002-3203-5692
  • Burhan Hambali Universitas Pendidikan Indonesia
  • Eko Purnomo Universitas Negeri Padang
  • Rifqi Festiawan Universitas Jenderal Soedirman
  • Yovhandra Ockta Universitas Negeri Padang https://orcid.org/0009-0001-6381-3477

DOI:

https://doi.org/10.47197/retos.v61.108861

Palavras-chave:

SMO2, badminton, recuperação de SMO2, Vo2Max

Resumo

A saturação muscular de oxigénio (SmO2) é um parâmetro fisiológico adicional que ajuda a identificar a transição da carga de trabalho aeróbia para anaeróbia. Além disso, pode utilizá-lo para prever o rendimento calculando o Vo2 e o gasto energético. A saturação de oxigénio muscular (SmO2) é uma medida da saturação de oxigénio no tecido muscular que pode ser utilizada para avaliar as zonas metabólicas, a intensidade do treino e o desempenho do atleta. A saturação muscular de oxigénio (SMO2) de um atleta é uma medida de quando os seus músculos utilizam o oxigénio, o que é importante para avaliar o desempenho e criar programas de treino. Esta investigação é um estudo experimental de uma semana com um projeto de estudo de caso único. A investigação tem como objetivo analisar o efeito do Vo2Max na saturação muscular de oxigénio (SMO2) em atletas universitários de badminton. Os sujeitos desta investigação são estudantes atletas que praticam badminton de forma ativa. Hubo 6 inquiridos que foram questionados para serem sujeitos de investigação e que cumpriam os critérios especificados, nomeadamente, fazer exercício ativamente três vezes por semana e estar de boa saúde. Além disso, o autor recolheu dados sobre os atletas que utilizaram o Vo2Max mais alto e mais baixo para analisar a otimização do SMO2, que serviu de abordagem para esta investigação. Os resultados da análise mostram que existe uma influência significativa entre a otimização do Vo2max e do SMO2; pode ser observado através da diferença na tentativa com um valor de sig (bilateral) de 0,000 < 0,05. Outro hallazgo é que os atletas com um Vo2max mais elevado apresentam melhores resultados de recuperação do SMO2. melhor que os atletas com baixo Vo2max; neste estúdio, os atletas com um Vo2max mais elevado apresentaram um aumento de 37% no SMO2 em dois minutos, enquanto os atletas com um Vo2max mais baixo apresentaram um aumento de 21%. Este é um hallazgo interessante para principiantes e atletas sobre a importância da capacidade máxima de Vo2 na otimização do SMO2.

Referências

Ansari, M. A., Shojaeifar, M., & Mohajerani, E. (2014). The estimation of recovery time of calf muscle oxygen saturation during exercise by using functional near infrared spectroscopy. Optics Communications, 325, 23–27.

Belardinelli, R., Barstow, T., Porszasz, J., & Wasserman, K. (1995). Skeletal muscle oxygenation during constant work rate exercise. Medicine and Science in Sports and Exercise, 27 4, 512–519.

Belardinelli, R., Barstow, T., Porszasz, J., & Wasserman, K. (2004). Changes in skeletal muscle oxygenation during incremental exercise measured with near infrared spectroscopy. European Journal of Applied Physiology and Occupational Physiology, 70, 487–492.

Bonilla, A. A. V., Tomás-Carús, P., Brazo-Sayavera, J., Malta, J., Folgado, H., & Olcina, G. J. (2022). Relationship between anaerobic work capacity and critical oxygenation in athletes. Revista Andaluza de Medicina Del Deporte.

Bouissou1, P., Guezennec2, C., Defer3, G., & Pesquies2, P. (1987). Oxygen Consumption, Lactate Accumulation, and Sympathetic Response During Prolonged Exercise Under Hypoxia. International Journal of Sports Medicine, 08, 266–269.

Bylund‐Fellenius, A. ‐C., Idstrom, J. P., & Holm, S. H. (2015). Muscle Respiration during Exercise1–3. The American Review of Respiratory Disease, 129.

Bylund‐Fellenius, A. ‐C., Idström, J. P., & Holm, S. H. (1984). Muscle respiration during exercise. The American Review of Respiratory Disease, 129 2 Pt 2, S10-2.

Carlisle, A., Sharp, C. C., & Carlisle, M. (2001). Exercise and outdoor ambient air pollution. British Journal of Sports Medicine, 35, 214–222.

Crispin, P. J. (2019). Effect of anemia on muscle oxygen saturation during submaximal exercise. Transfusion, 60.

Darajat, J., & Abduljabar, B. (2014). Aplikasi Statistika Dalam Penjas. Bandung: CV. Bintang Warliartika.

Gómez-Carmona, C. D., Bastida-Castillo, A., Rojas-Valverde, D., de la Cruz Sánchez, E., García-Rubio, J., Ibáñez, S. J., & Pino-Ortega, J. (2019). Lower-limb Dynamics of Muscle Oxygen Saturation During the Back-squat Exercise: Effects of Training Load and Effort Level. Journal of Strength and Conditioning Research.

Goodrich, J., Ryan, B., & Byrnes, W. (2018). The Influence of Oxygen Saturation on the Relationship Between Hemoglobin Mass and VO2max. Sports Medicine International Open, 02(04), E98–E104. https://doi.org/10.1055/a-0655-7207

Henni, S., & Abraham, P. (2017). Muscle Oxygen content at exercise in patients with claudication. Journal of Applied Physiology, 123 5, 1412.

Horstman, D. H., Gleser, M. A., & Delehunt, J. C. (1976). Effects of altering O2 delivery on VO2 of isolated, working muscle. The American Journal of Physiology, 230 2, 327–334.

Jones, S., Tillin, T., Williams, S., Rapala, A., Chaturvedi, N., & Hughes, A. D. (2022). Skeletal Muscle Tissue Saturation Changes Measured Using Near Infrared Spectroscopy During Exercise Are Associated With Post-Occlusive Reactive Hyperaemia. Frontiers in Physiology, 13.

McCready, T. A., Arnold, K. E., & Davis, J. E. (2016). Relationship between Maximum Oxygen Consumption and Muscle Oxygenation During a Cross Country Season. The FASEB Journal, 30.

McCully, K. K. (2010). The influence of passive stretch on muscle oxygen saturation. Advances in Experimental Medicine and Biology, 662, 317–322.

McCully, K. K., Halber, C., & Posner, J. D. (1994). Exercise-induced changes in oxygen saturation in the calf muscles of elderly subjects with peripheral vascular disease. Journal of Gerontology, 49 3, B128-34.

Michailidis, Y., Chatzimagioglou, A., Mikikis, D., Ispirlidis, I., & Metaxas, T. I. (2020). Maximal oxygen consumption and oxygen muscle saturation recovery following repeated anaerobic sprint test in youth soccer players. The Journal of Sports Medicine and Physical Fitness.

Miranda-Fuentes, C., Chirosa-Ríos, L. J., Guisado-Requena, I. M., García-Pinillos, F., Del-Cuerpo, I., López-Fuenzalida, A., Ibacache-Saavedra, P., & Jérez-Mayorga, D. (2022). Can strength exercise affect the muscle oxygen saturation response? Acta of Bioengineering and Biomechanics, 24 2, 37–45.

Negara, J. D. K. (2023). Cycling Athlete Performance: Analysis of Muscle Oxygen Saturation through Moxy Measurement. Jurnal Pendidikan Jasmani Dan Olahraga.

Negara, J. D. K., Mudjianto, S., Budikayanti, A., & Nugraha PP, A. (2021). The Effect of Gamma Wave Optimization and Attention on Hitting Skills in Softball. International Journal of Human Movement and Sports Sciences, 9(1), 103–109. https://doi.org/10.13189/saj.2021.090114

Ogino, S., Ogino, N., Tomizuka, K., Eitoku, M., Okada, Y., Tanaka, Y., Suganuma, N., & Ogino, K. (2021). SOD2 mRNA as a potential biomarker for exercise: interventional and cross-sectional research in healthy subjects. Journal of Clinical Biochemistry and Nutrition, 69, 137–144.

Pineda, L. G. H., Guevara, D. A. C., & Durango, D. W. B. (2021). Technological solution to prevent common lower extremity injuries for high-level footballers using IoT devices and data analysis. 2021 IEEE 1st International Conference on Advanced Learning Technologies on Education & Research (ICALTER), 1–4.

Pratama, A. B., & Yimlamai, T. (2020). Effects of Active and Passive Recovery on Muscle Oxygenation and Swimming Performance. International Journal of Sports Physiology and Performance, 1–8.

Raberin, A., Meric, H., Mucci, P., Ayerbe, J. L., & Durand, F. (2019). Muscle and cerebral oxygenation during exercise in athletes with exercise-induced hypoxemia: A comparison between sea level and acute moderate hypoxia. European Journal of Sport Science, 20, 803–812.

Ramos, C. A., Wolterbeek, H. T., & Almeida, S. M. (2014). Exposure to indoor air pollutants during physical activity in fitness centers. Building and Environment, 82, 349–360.

Rauner, A., Jekauc, D., Mess, F., Schmidt, S. C. E., & Woll, A. (2015). Tracking physical activity in different settings from late childhood to early adulthood in Germany: the MoMo longitudinal study. BMC Public Health, 15.

Sumartiningsih, S., Risdiyanto, A., Yusof, A., Rahayu, S., Handoyo, E., Puspita, M. A., Sugiharto, Mukarromah, S. B., Hooi, L. B., Lubis, J., Hanief, Y. N., Festiawan, R., & Eiberger, J. (2022). The FIFA 11+ for kids warm-up program improved balance and leg muscle strength in children (9–12 years old). Journal of Physical Education and Sport, 22(12), 3122–3127. https://doi.org/10.7752/jpes.2022.12395

Thiel, C., Vogt, L., Himmelreich, H., Hübscher, M., & Banzer, W. (2011). Reproducibility of Muscle Oxygen Saturation. International Journal of Sports Medicine, 32, 277–280.

Vasquez Bonilla, A. A., González-Custodio, A., Timón, R., Camacho-Cardenosa, A., Camacho-Cardenosa, M., & Olcina, G. (2023). Training zones through muscle oxygen saturation during a graded exercise test in cyclists and triathletes. Biology of Sport, 40(2), 439–448. https://doi.org/10.5114/biolsport.2023.114288

Yano, T., Horiuchi, M., Yunoki, T., Matsuura, R., & Ogata, H. (2005). Relationship between maximal oxygen uptake and oxygenation level in inactive muscle at exhaustion in incremental exercise in humans. Physiological Research, 54 6, 679–685.

Yogev, A., Arnold, J., Nelson, H., Clarke, D. C., Guenette, J. A., Sporer, B. C., & Koehle, M. S. (2023). Comparing the reliability of muscle oxygen saturation with common performance and physiological markers across cycling exercise intensity. Frontiers in Sports and Active Living, 5(August), 1–10. https://doi.org/10.3389/fspor.2023.1143393

Żebrowska, M., Weippert, M., & Petelczyc, M. (2021). Oxyhemoglobin Concentration and Oxygen Uptake Signal During Recovery From Exhaustive Exercise in Healthy Subjects—Relationship With Aerobic Capacity. Frontiers in Physiology, 12.

Downloads

Publicado

2024-12-01

Como Citar

Negara, J. D. K. ., Nuryadi, N., Firmansyah, H. ., Gumilar, A. ., Hambali, B. ., Purnomo, E. ., Festiawan, R. ., & Ockta, Y. . (2024). O efeito do vo2max na saturação muscular de oxigénio (SMO2) em atletas universitários de badminton. Retos, 61, 1184–1190. https://doi.org/10.47197/retos.v61.108861

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 3 4 > >>