Efectos de la sauna de infrarrojos, la sauna tradicional y la inmersión en agua caliente en la recuperación acelerada del ejercicio y la prevención del daño celular: un estudio experimental (Effects of infrared sauna, traditional sauna, and warm water immersion on accelerated exercise recovery and prevention of cell damage: an experimental study)
DOI:
https://doi.org/10.47197/retos.v59.103298Palabras clave:
sauna de infrarrojos, sauna tradicional, inmersión en agua caliente, recuperación, daño celular muscularResumen
Los objetivos de este estudio fueron investigar los efectos de la sauna de infrarrojos de una sola sesión, la sauna tradicional, la inmersión en agua caliente y la recuperación pasiva de la fatiga y el daño celular muscular en atletas y no atletas. Participaron en este estudio ocho atletas masculinos de bádminton y ocho no atletas masculinos. Los participantes en el estudio fueron tratados con actividad física submáxima evaluada mediante ergómetro, y luego se recuperaron con diferentes modalidades. Cada tratamiento estuvo separado por una semana de período de descanso mediante un diseño cruzado aleatorio. Las modalidades de recuperación de sauna de infrarrojos (IRS) fueron 45±2°C, sauna tradicional (TRS) 40±2°C, inmersión en agua caliente (WWI) 40±2°C, y recuperación pasiva (PAS) durante 20 minutos. Se evaluaron el lactato en sangre, la creatina quinasa, la glucosa en sangre, la frecuencia cardiaca, la temperatura corporal y el nivel de dolor, inmediatamente después de la actividad física (pre), después de la recuperación (post), y después de 40 minutos sentados (post-40min). Nuestros resultados indicaron que el IAM y el SRI fueron eficaces para reducir la fatiga en atletas y no atletas. Además, el PAS y el TRS previnieron el daño muscular en no deportistas tras 60 minutos de actividad física. Todas las modalidades térmicas redujeron la BGL. El menor dolor se registró durante la modalidad ETR, mientras que la modalidad PAS tendió a causar dolor intenso. Las mediciones de la temperatura corporal no fueron significativamente diferentes entre las modalidades. Según nuestros datos, la WWI es más eficaz para aumentar la recuperación y prevenir el daño de las células musculares en los atletas. Por otra parte, el IRS y el TRS son más eficaces para la recuperación en no deportistas. Es necesario realizar más investigaciones con diferentes sujetos deportistas, diferentes tipos de ejercicio, diferentes biomarcadores y pruebas de rendimiento físico.
Palabras clave: sauna de infrarrojos; sauna tradicional; inmersión en agua caliente; recuperación; daño celular muscular
Abstract. The objectives of this study were to investigate the effects of single session infrared sauna, traditional sauna, warm water immersion, and passive recovery from fatigue and muscle cell damage in athletes and nonathletes. Eight male badminton athletes and eight male nonathletes participated in this study. The study participants were treated with submaximal physical activity assessed by ergometer, then recovered with different modalities. Each treatment was separated by one week of a resting period through a randomized crossover design. The recovery modalities of infrared sauna (IRS) were 45±2°C, traditional sauna (TRS) 40±2°C, warm water immersion (WWI) 40±2°C, and passive recovery (PAS) for 20 minutes. Blood lactate, creatine kinase, blood glucose, heart rate, body temperature and level of pain were assessed, immediately after physical activity (pre), after recovery (post), and after 40 minutes of sitting (post-40min). Our findings indicated that the WWI and IRS were effective reducing fatigue in athletes and nonathletes. Moreover, PAS and TRS prevented muscle damage in nonathletes after 60 minutes of physical activity. All the thermal modalities decreased the BGL. The least amount of pain reported during the WWI modality, while the PAS modality tended to cause severe pain. Body temperature measurements were not significantly different among the modalities. According to our data, the WWI is more effective at increasing recovery and preventing muscle cell damage in athletes. Moreover, IRS and TRS are more effective for recovery in nonathletes. Further research needs to be conducted with different sports subjects, different types of exercise, different biomarkers, and physical performance tests.
Keywords: infrared sauna; traditional sauna; warm water immersion; recovery; muscle cell damage
Citas
Beever, R. (2009). Far-Infrared Saunas for Treatment of Cardiovascular Risk Factors: Summary of Published Evidence. Ca-nadian Family Physician Medecin de Famille Canadien, 55(7), 691–696.
Chen, T. C., Huang, Y., Chou, T., Hsu, S., Chen, M., & Nosaka, K. (2023). Effects of Far‐Infrared Radiation Lamp Thera-py on Recovery from Muscle Damage Induced by Eccentric Exercise. European Journal of Sport Science, 23(8), 1638–1646. https://doi.org/10.1080/17461391.2023.2185163
Doherty, R., Madigan, S. M., Nevill, A., Warrington, G., & Ellis, J. G. (2021). The Sleep and Recovery Practices of Ath-letes. Nutrients, 13(4), 1330. https://doi.org/10.3390/nu13041330
Gravel, H., Behzadi, P., Cardinal, S., Barry, H., Neagoe, P.-E., Juneau, M., Nigam, A., Sirois, M. G., & Gagnon, D. (2021). Acute Vascular Benefits of Finnish Sauna Bathing in Patients with Stable Coronary Artery Disease. Canadian Jour-nal of Cardiology, 37(3), 493–499. https://doi.org/10.1016/j.cjca.2020.06.017
Gupte, A. A., Bomhoff, G. L., Touchberry, C. D., & Geiger, P. C. (2011). Acute Heat Treatment Improves Insulin-Stimulated Glucose Uptake in Aged Skeletal Muscle. Journal of Applied Physiology, 110(2), 451–457. https://doi.org/10.1152/japplphysiol.00849.2010
Hall, M. M., Rajasekaran, S., Thomsen, T. W., & Peterson, A. R. (2016). Lactate: Friend or Foe. PM&R, 8(3S). https://doi.org/10.1016/j.pmrj.2015.10.018
Hausswirth, C., Louis, J., Bieuzen, F., Pournot, H., Fournier, J., Filliard, J.-R., & Brisswalter, J. (2011). Effects of Whole-Body Cryotherapy vs. Far-Infrared vs. Passive Modalities on Recovery from Exercise-Induced Muscle Damage in Highly-Trained Runners. PLoS ONE, 6(12), e27749. https://doi.org/10.1371/journal.pone.0027749
Hsieh, C.-C., Nosaka, K., Chou, T.-Y., Hsu, S.-T., & Chen, T. C. (2022). Effects of Far-Infrared Radiation-Lamp Therapy on Recovery from Simulated Soccer Match Running Activities in Elite Soccer Players. International Journal of Sports Physi-ology and Performance, 17(9), 1432–1438. https://doi.org/10.1123/ijspp.2022-0084
Ihsan, F., Kozina, Z., Sukendro, S., Nasrulloh, A., Arzhan Hidayat, R., & Perdana, S. (2024). Nutritional Strategies for Rap-id Recovery in Sport: A Literature Review. Retos, 57, 153–164. https://doi.org/10.47197/retos.v57.105622
Joyner, M. J., & Casey, D. P. (2015). Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hi-erarchy of Competing Physiological Needs. Physiological Reviews, 95(2), 549–601. https://doi.org/10.1152/physrev.00035.2013
Kaharina, A., Sari, G. M., & Tinduh, D. (2017). Pengaruh Radiasi Far Infrared dengan Metode Bag Infrared Terhadap Penurunan Kadar Asam Laktat Darah Setelah Aktivitas Fisik Submaksimal [Tesis]. Universitas Airlangga.
Koryak, Y. (2002). “DRY” Immersion Induces Neural and Contractile Adaptations in The Human Triceps Surae Muscle. Environmental Medicine: Annual Report of the Research Institute of Environmental Medicine, Nagoya University, 46(1–2), 17–27.
Kreher, J. B., & Schwartz, J. B. (2012). Overtraining Syndrome. Sports Health: A Multidisciplinary Approach, 4(2), 128–138. https://doi.org/10.1177/1941738111434406
Kukkonen-Harjula, K., & Kauppinen, K. (2006). Health Effects and Risks Of Sauna Bathing. International Journal of Circumpo-lar Health, 65(3), 195–205. https://doi.org/10.3402/ijch.v65i3.18102
Kunutsor, S. K., Häkkinen, A., Zaccardi, F., Laukkanen, T., Lee, E., Willeit, P., Khan, H., & Laukkanen, J. A. (2018). Short-Term Effects of Finnish Sauna Bathing on Blood-Based Markers of Cardiovascular Function in Non-Naive Sauna Users. Heart and Vessels, 33(12), 1515–1524. https://doi.org/10.1007/s00380-018-1202-9
Kunutsor, S. K., Lavie, C. J., & Laukkanen, J. (2021). Finnish Sauna and COVID-19. Le Infezioni in Medicina, 29(1), 160–162.
Laukkanen, J. A., Laukkanen, T., & Kunutsor, S. (2019). In Reply—Sauna Bathing and Healthy Sweating. Mayo Clinic Pro-ceedings, 94(4), 727–728. https://doi.org/10.1016/j.mayocp.2018.12.023
Laukkanen, J. A., Laukkanen, T., & Kunutsor, S. K. (2018). Cardiovascular and Other Health Benefits of Sauna Bathing: A Review of the Evidence. Mayo Clinic Proceedings, 93(8), 1111–1121. https://doi.org/10.1016/j.mayocp.2018.04.008
Laukkanen, T., Khan, H., Zaccardi, F., & Laukkanen, J. A. (2015). Association Between Sauna Bathing and Fatal Cardiovas-cular and All-Cause Mortality Events. JAMA Internal Medicine, 175(4), 542. https://doi.org/10.1001/jamainternmed.2014.8187
Laukkanen, T., Kunutsor, S. K., Zaccardi, F., Lee, E., Willeit, P., Khan, H., & Laukkanen, J. A. (2018). Acute Effects of Sauna Bathing on Cardiovascular Function. Journal of Human Hypertension, 32(2), 129–138. https://doi.org/10.1038/s41371-017-0008-z
Lee, S., Ishibashi, S., Shimomura, Y., & Katsuura, T. (2012). Physiological Functions of The Effects of The Different Bath-ing Method on Recovery from Local Muscle Fatigue. Journal of Physiological Anthropology, 31(1), 26. https://doi.org/10.1186/1880-6805-31-26
Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., Zou, Y., Wang, J.-X., Wang, Z., & Yu, T. (2022). Lactate Metabolism in Human Health and Disease. Signal Transduction and Targeted Therapy, 7(1), 305. https://doi.org/10.1038/s41392-022-01151-3
Manosalva, C., Quiroga, J., Hidalgo, A. I., Alarcón, P., Anseoleaga, N., Hidalgo, M. A., & Burgos, R. A. (2022). Role of Lactate in Inflammatory Processes: Friend or Foe. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.808799
McDougle, J. M., Mangine, G. T., Townsend, J. R., Jajtner, A. R., & Feito, Y. (2023). Acute Physiological Outcomes of High-Intensity Functional Training: A Scoping Review. PeerJ, 11, e14493. https://doi.org/10.7717/peerj.14493
Mero, A., Tornberg, J., Mäntykoski, M., & Puurtinen, R. (2015). Effects of Far-Infrared Sauna Bathing on Recovery from Strength and Endurance Training Sessions in Men. SpringerPlus, 4(1), 321. https://doi.org/10.1186/s40064-015-1093-5
NASA. (2009). Infrared Light. https://www.nasa.gov/audience/forstudents/5-8/features/F_Infrared_Light_5-8.html
Nédélec, M., Halson, S., Abaidia, A.-E., Ahmaidi, S., & Dupont, G. (2015). Stress, Sleep and Recovery in Elite Soccer: A Critical Review of the Literature. Sports Medicine, 45(10), 1387–1400. https://doi.org/10.1007/s40279-015-0358-z
Noponen, P. V., Hakkinen, K., & Mero, A. A. (2015). Effects of Far Infrared Heat on Recovery in Power Athletes. Journal of Athletic Enhancement, 4(4), 1–6. https://doi.org/10.4172/2324-9080.1000202
Pallubinsky, H., Phielix, E., Dautzenberg, B., Schaart, G., Connell, N. J., de Wit‐Verheggen, V., Havekes, B., van Baak, M. A., Schrauwen, P., & van Marken Lichtenbelt, W. D. (2020). Passive Exposure to Heat Improves Glucose Metabolism in Overweight Humans. Acta Physiologica, 229(4). https://doi.org/10.1111/apha.13488
Podstawski, R., Boraczyński, T., Boraczyński, M., Choszcz, D., Mańkowski, S., & Markowski, P. (2014). Sauna-Induced Body Mass Loss in Young Sedentary Women and Men. The Scientific World Journal, 2014, 1–7. https://doi.org/10.1155/2014/307421
Pournot, H., Bieuzen, F., Duffield, R., Lepretre, P.-M., Cozzolino, C., & Hausswirth, C. (2011). Short Term Effects of Various Water Immersions on Recovery from Exhaustive Intermittent Exercise. European Journal of Applied Physiology, 111(7), 1287–1295. https://doi.org/10.1007/s00421-010-1754-6
Pöyhönen, T., & Avela, J. (2002). Effect of Head-Out Water Immersion on Neuromuscular Function of The Plantarflexor Muscles. Aviation, Space, and Environmental Medicine, 73(12), 1215–1218.
Rey, E., Lago-Peñas, C., Casáis, L., & Lago-Ballesteros, J. (2012). The Effect of Immediate Post-Training Active and Passive Recovery Interventions on Anaerobic Performance and Lower Limb Flexibility in Professional Soccer Players. Journal of Human Kinetics, 31(2012), 121–129. https://doi.org/10.2478/v10078-012-0013-9
Ríos, D. C. Z., Miramar, A. J. M., Paz, Y. M., & Padilla, I. C. R. (2021). Lactate: A Biological Marker of Physical Activity in Colombian Weightlifting Athletes. Revista Brasileira de Medicina Do Esporte, 27(1), 65–69. https://doi.org/10.1590/1517-8692202127012019_0047
Sawka, M. N., Wenger. C, B., Young, A. J., & Pandolf, K. B. (1993). Physiological Responses to Exercise in the Heat. In Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations. National Academies Press (US).
Scheffer, D. da L., & Latini, A. (2020). Exercise-Induced Immune System Response: Anti-Inflammatory Status on Peripher-al and Central Organs. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(10), 165823. https://doi.org/10.1016/j.bbadis.2020.165823
Supruniuk, E., Górski, J., & Chabowski, A. (2023). Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants, 12(2), 501. https://doi.org/10.3390/antiox12020501
Theofilidis, G., Bogdanis, G., Koutedakis, Y., & Karatzaferi, C. (2018). Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports, 6(4), 153. https://doi.org/10.3390/sports6040153
Tsagkaris, C., Papazoglou, A. S., Eleftheriades, A., Tsakopoulos, S., Alexiou, A., Găman, M.-A., & Moysidis, D. V. (2022). Infrared Radiation in the Management of Musculoskeletal Conditions and Chronic Pain: A Systematic Review. European Journal of Investigation in Health, Psychology and Education, 12(3), 334–343. https://doi.org/10.3390/ejihpe12030024
Vaile, J., Halson, S., Gill, N., & Dawson, B. (2008a). Effect of Hydrotherapy on Recovery from Fatigue. International Journal of Sports Medicine, 29(7), 539–544. https://doi.org/10.1055/s-2007-989267
Vaile, J., Halson, S., Gill, N., & Dawson, B. (2008b). Effect Of Hydrotherapy on The Signs and Symptoms of Delayed On-set Muscle Soreness. European Journal of Applied Physiology, 102(4), 447–455. https://doi.org/10.1007/s00421-007-0605-6
Val, R., Alex, W., John, L., & Ann, R. (2006). Electrotherapy Explained: Principles and Practice (4th ed.). Elsevier Health Sci-ences.
Vatansever, F., & Hamblin, M. R. (2012). Far Infrared Radiation (FIR): Its Biological Effects and Medical Applications. Pho-tonics & Lasers in Medicine, 1(4). https://doi.org/10.1515/plm-2012-0034
Versey, N. G., Halson, S. L., & Dawson, B. T. (2013). Water Immersion Recovery for Athletes: Effect on Exercise Per-formance and Practical Recommendations. Sports Medicine, 43(11), 1101–1130. https://doi.org/10.1007/s40279-013-0063-8
Wahjuni, E. S., Kaharina, A., Yulfadinata, A., & Akbar, I. K. (2019). Comparison of Far Infrared Radiation and Warm Wa-ter Immersion on Recovery After Submaximal Physical Activity. 5th International Conference on Physical Education, Sport, and Health.
Wang, Y., Li, S., Zhang, Y., Chen, Y., Yan, F., Han, L., & Ma, Y. (2021). Heat and cold therapy reduce pain in patients with delayed onset muscle soreness: A systematic review and meta-analysis of 32 randomized controlled trials. Physical Therapy in Sport, 48, 177–187. https://doi.org/10.1016/j.ptsp.2021.01.004
Watson, A., Brickson, S., Brooks, A., & Dunn, W. (2017). Subjective Well-Being and Training Load Predict In-Season Inju-ry and Illness Risk in Female Youth Soccer Players. British Journal of Sports Medicine, 51(3), 194–199. https://doi.org/10.1136/bjsports-2016-096584
Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Physiological Response to Water Immersion. Sports Medicine, 36(9), 747–765. https://doi.org/10.2165/00007256-200636090-00003
Wiriawan, O., Kaharina, A., & Hamdani. (2022). Pemulihan Olahraga: Modalitas Radiasi Inframerah. Uwais Inspirasi Indone-sia.
Wiriawan, O., Setijono, H., Putera, S. H. P., Yosika, G. F., Kaharina, A., Sholikhah, A. M., & Pranoto, A. (2024). Far-Infrared Radiation with Sauna Method Improves Recovery of Fatigue and Muscle Damage in Athletes After Submaximal Physical Exercise. Retos, 54, 57–62. https://doi.org/10.47197/retos.v54.102938
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess