O exercício de intensidade moderada tem o efeito mais benéfico na resposta inflamatória em camundongos induzidos por frutose (Mus musculus)

Autores

  • Nabilah Izzatunnisa Medical Program, Faculty of Medicine, Universitas Airlangga
  • Faiq Amirul Hakim Medical Program, Faculty of Medicine, Universitas Airlangga
  • Wildan Maulana Ishom Putra Medical Program, Faculty of Medicine, Universitas Airlangga
  • Purwo Sri Rejeki Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-6285-4058
  • Lilik Herawati Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga
  • Hermina Novida Division of Endocrinology, Diabetes and Metabolism, Airlangga University, Dr Soetomo General Hospital
  • Shariff Halim Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang https://orcid.org/0000-0003-3792-9879
  • Adi Pranoto Department of Sport Coaching Education, Faculty of Sport and Health Science, Universitas Negeri Surabaya https://orcid.org/0000-0003-4080-9245

DOI:

https://doi.org/10.47197/retos.v60.107772

Palavras-chave:

Anti-inflammatory, obesity, pro-inflammatory, swimming exercise

Resumo

Os carboidratos são a fonte de energia mais importante para a maioria da população. No entanto, o consumo de níveis elevados de hidratos de carbono, especialmente de fontes processadas, está associado a uma maior incidência de obesidade. A obesidade faz com que os níveis de adiponectina diminuam, o que tem implicações na ativação de vias de sinalização inflamatória, aumentando a inflamação crónica e o risco de desenvolvimento de células cancerígenas. O exercício é relatado como uma alternativa que pode ser usada para manter um ambiente antiinflamatório. No entanto, o efeito da intensidade do exercício na redução dos níveis de TNF-α e no aumento da adiponectina não foi claramente explorado. Portanto, este estudo tem como objetivo demonstrar o efeito de diversos tipos de exercício físico nas alterações da resposta inflamatória em camundongos induzida pela frutose (Mus musculus). Este estudo é um verdadeiro estudo experimental com delineamento pós-teste de grupo controle randomizado utilizando 28 camundongos machos (Mus musculus), com oito semanas de idade, peso corporal de 20 ± 5 gramas e divididos aleatoriamente em quatro grupos: controle (CTR), grupo baixo. -exercício de intensidade (LIE), exercício de intensidade moderada (MIE) e exercício de alta intensidade (HIE). Os camundongos foram induzidos oralmente com solução de frutose a 20% na dose de 1,86 gramas/kg de peso corporal do dia 1 ao dia 60. O treinamento de natação foi realizado com frequência de 3 vezes por semana durante 8 semanas. Amostras de sangue foram coletadas 24 horas após o último exercício, enquanto os níveis de adiponectina e TNF-α foram medidos pelo método ELISA. Técnicas de análise de dados utilizando ANOVA unidirecional e teste post-hoc HSD de Tukey. Resultados da análise dos níveis de TNF-α em CTR, LIE, MIE e HIE (103,43 ± 42,21 vs 93,82 ± 60,87 vs 34,52 ± 15,35 vs 68,14 ± 26,14 ng /mL e p = 0,004). Adiponectina em CTR, LIE, MIE e HIE (27,39±7,48 vs 66,74±7,81 vs 235,13±47,94 vs 147,92±19,46 pg/mL e p=0,000). A intervenção de exercício com três tipos diferentes de intensidade durante 8 semanas aumentou os níveis de adiponectina, enquanto os níveis de TNF-α apenas diminuíram no grupo de exercício de intensidade moderada.

Palavras-chave: Antiinflamatório, obesidade, pró-inflamatório, exercício de natação

Referências

Achari, A. E., & Jain, S. K. (2017). Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. International journal of molecular sciences, 18(6), 1321. https://doi.org/10.3390/ijms18061321.

Alam, Y. H., Kim, R., & Jang, C. (2022). Metabolism and Health Impacts of Dietary Sugars. Journal of Lipid and Atherosclerosis, 11(1), 20–38. https://doi.org/10.12997/jla.2022.11.1.20.

Basciano, H., Federico, L., & Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & metabolism, 2(1), 5. https://doi.org/10.1186/1743-7075-2-5.

Bashashati, M., Moradi, M., & Sarosiek, I. (2017). Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine, 99, 132–138. https://doi.org/10.1016/j.cyto.2017.08.017.

Bashiri, H., Enayati, M., Bashiri, A., & Salari, A. A. (2020). Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiology & behavior, 223, 113003. https://doi.org/10.1016/j.physbeh.2020.113003.

Bouassida, A., Chamari, K., Zaouali, M., Feki, Y., Zbidi, A., & Tabka, Z. (2010). Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. British journal of sports medicine, 44(9), 620–630. https://doi.org/10.1136/bjsm.2008.046151.

Clemente-Suárez, V. J., Mielgo-Ayuso, J., Martín-Rodríguez, A., Ramos-Campo, D. J., Redondo-Flórez, L., & Tornero-Aguilera, J. F. (2022). The Burden of Carbohydrates in Health and Disease. Nutrients, 14(18), 3809. https://doi.org/10.3390/nu14183809.

Conraads, V. M., Beckers, P., Bosmans, J., De Clerck, L. S., Stevens, W. J., Vrints, C. J., & Brutsaert, D. L. (2002). Combined endurance/resistance training reduces plasma TNF-alpha receptor levels in patients with chronic heart failure and coronary artery disease. European heart journal, 23(23), 1854–1860. https://doi.org/10.1053/euhj.2002.3239.

Cust, A. E., Slimani, N., Kaaks, R., van Bakel, M., Biessy, C., Ferrari, P., Laville, M., Tjønneland, A., Olsen, A., Overvad, K., Lajous, M., Clavel-Chapelon, F., Boutron-Ruault, M. C., Linseisen, J., Rohrmann, S., Nöthlings, U., Boeing, H., Palli, D., Sieri, S., Panico, S., … Riboli, E. (2007). Dietary carbohydrates, glycemic index, glycemic load, and endometrial cancer risk within the European Prospective Investigation into Cancer and Nutrition cohort. American journal of epidemiology, 166(8), 912–923. https://doi.org/10.1093/aje/kwm161.

da Costa Daniele, T. M., de Bruin, P. F. C., de Matos, R. S., de Bruin, G. S., Maia Chaves, C., Junior, & de Bruin, V. M. S. (2020). Exercise effects on brain and behavior in healthy mice, Alzheimer's disease and Parkinson's disease model-A systematic review and meta-analysis. Behavioural brain research, 383, 112488. https://doi.org/10.1016/j.bbr.2020.112488.

De Lorenzo, A., Soldati, L., Sarlo, F., Calvani, M., Di Lorenzo, N., & Di Renzo, L. (2016). New obesity classification criteria as a tool for bariatric surgery indication. World journal of gastroenterology, 22(2), 681–703. https://doi.org/10.3748/wjg.v22.i2.681.

De Souza, L., Barros, W. M., De Souza, R. M., Delanogare, E., Machado, A. E., Braga, S. P., Rosa, G. K., Nardi, G. M., Rafacho, A., Speretta, G. F. F., & Moreira, E. L. G. (2021). Impact of different fructose concentrations on metabolic and behavioral parameters of male and female mice. Physiology & behavior, 228, 113187. https://doi.org/10.1016/j.physbeh.2020.113187.

DiNicolantonio, J. J., O'Keefe, J. H., & Lucan, S. C. (2015). Added fructose: a principal driver of type 2 diabetes mellitus and its consequences. Mayo Clinic proceedings, 90(3), 372–381. https://doi.org/10.1016/j.mayocp.2014.12.019.

Drake, I., Sonestedt, E., Gullberg, B., Ahlgren, G., Bjartell, A., Wallström, P., & Wirfält, E. (2012). Dietary intakes of carbohydrates in relation to prostate cancer risk: a prospective study in the Malmö Diet and Cancer cohort. The American journal of clinical nutrition, 96(6), 1409–1418. https://doi.org/10.3945/ajcn.112.039438.

Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M., & Paschke, R. (2002). Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochemical and biophysical research communications, 290(3), 1084–1089. https://doi.org/10.1006/bbrc.2001.6307.

Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature medicine, 25(12), 1822–1832. https://doi.org/10.1038/s41591-019-0675-0.

Gonzalez-Gil, A. M., & Elizondo-Montemayor, L. (2020). The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients, 12(6), 1899. https://doi.org/10.3390/nu12061899.

Guo, S., Huang, Y., Zhang, Y., Huang, H., Hong, S., & Liu, T. (2020). Impacts of exercise interventions on different diseases and organ functions in mice. Journal of sport and health science, 9(1), 53–73. https://doi.org/10.1016/j.jshs.2019.07.004.

Hall, K. D., Farooqi, I. S., Friedman, J. M., Klein, S., Loos, R. J. F., Mangelsdorf, D. J., O'Rahilly, S., Ravussin, E., Redman, L. M., Ryan, D. H., Speakman, J. R., & Tobias, D. K. (2022). The energy balance model of obesity: beyond calories in, calories out. The American journal of clinical nutrition, 115(5), 1243–1254. https://doi.org/10.1093/ajcn/nqac031.

Hayashino, Y., Jackson, J. L., Hirata, T., Fukumori, N., Nakamura, F., Fukuhara, S., Tsujii, S., & Ishii, H. (2014). Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metabolism: clinical and experimental, 63(3), 431–440. https://doi.org/10.1016/j.metabol.2013.08.018.

Heikkilä, K., Ebrahim, S., & Lawlor, D. A. (2008). Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. European journal of cancer (Oxford, England : 1990), 44(7), 937–945. https://doi.org/10.1016/j.ejca.2008.02.047.

Herman, M. A., & Birnbaum, M. J. (2021). Molecular aspects of fructose metabolism and metabolic disease. Cell metabolism, 33(12), 2329–2354. https://doi.org/10.1016/j.cmet.2021.09.010.

Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., Furukawa, S., Tochino, Y., Komuro, R., Matsuda, M., & Shimomura, I. (2007). Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes, 56(4), 901–911. https://doi.org/10.2337/db06-0911.

Jackson, J. L., Judd, S. E., Panwar, B., Howard, V. J., Wadley, V. G., Jenny, N. S., & Gutiérrez, O. M. (2016). Associations of 25-hydroxyvitamin D with markers of inflammation, insulin resistance and obesity in black and white community-dwelling adults. Journal of clinical & translational endocrinology, 5, 21–25. https://doi.org/10.1016/j.jcte.2016.06.002.

Jahromi, A. S., Zar, A., Ahmadi, F., Krustrup, P., Ebrahim, K., Hovanloo, F., & Amani, D. (2014). Effects of Endurance Training on the Serum Levels of Tumour Necrosis Factor-α and Interferon-γ in Sedentary Men. Immune network, 14(5), 255–259. https://doi.org/10.4110/in.2014.14.5.255.

Jebb S. A. (2015). Carbohydrates and obesity: from evidence to policy in the UK. The Proceedings of the Nutrition Society, 74(3), 215–220. https://doi.org/10.1017/S0029665114001645.

Jin, X., Qiu, T., Li, L., Yu, R., Chen, X., Li, C., Proud, C. G., & Jiang, T. (2023). Pathophysiology of obesity and its associated diseases. Acta pharmaceutica Sinica. B, 13(6), 2403–2424. https://doi.org/10.1016/j.apsb.2023.01.012.

Kanuri, G., Spruss, A., Wagnerberger, S., Bischoff, S. C., & Bergheim, I. (2011). Fructose-induced steatosis in mice: role of plasminogen activator inhibitor-1, microsomal triglyceride transfer protein and NKT cells. Laboratory investigation; a journal of technical methods and pathology, 91(6), 885–895. https://doi.org/10.1038/labinvest.2011.44.

Lee, S. H., Park, S. Y., & Choi, C. S. (2022). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & metabolism journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280.

Li, C., Li, J., Xiong, X., Liu, Y., Lv, Y., Qin, S., Liu, D., Wei, R., Ruan, X., Zhang, J., Xu, L., Wang, X., Chen, J., Zhang, Y., & Zheng, L. (2018). TRPM8 activation improves energy expenditure in skeletal muscle and exercise endurance in mice. Gene, 641, 111–116. https://doi.org/10.1016/j.gene.2017.10.045.

Liu, Z., Liu, H. Y., Zhou, H., Zhan, Q., Lai, W., Zeng, Q., Ren, H., & Xu, D. (2017). Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice. Frontiers in microbiology, 8, 1687. https://doi.org/10.3389/fmicb.2017.01687.

Ludtke, D. D., Siteneski, A., Galassi, T. O., Buffon, A. C., Cidral-Filho, F. J., Reed, W. R., Salgado, A. S. I., Dos Santos, A. R. S., & Martins, D. F. (2020). High-intensity swimming exercise reduces inflammatory pain in mice by activation of the endocannabinoid system. Scandinavian journal of medicine & science in sports, 30(8), 1369–1378. https://doi.org/10.1111/sms.13705.

Ma, X., Nan, F., Liang, H., Shu, P., Fan, X., Song, X., Hou, Y., & Zhang, D. (2022). Excessive intake of sugar: An accomplice of inflammation. Frontiers in immunology, 13, 988481. https://doi.org/10.3389/fimmu.2022.988481.

Makarem, N., Scott, M., Quatromoni, P., Jacques, P., & Parekh, N. (2014). Trends in dietary carbohydrate consumption from 1991 to 2008 in the Framingham Heart Study Offspring Cohort. The British journal of nutrition, 111(11), 2010–2023. https://doi.org/10.1017/S0007114513004443.

Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P., Willett, W. C., & Hu, F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes care, 33(11), 2477–2483. https://doi.org/10.2337/dc10-1079.

Malik, V. S., Schulze, M. B., & Hu, F. B. (2006). Intake of sugar-sweetened beverages and weight gain: a systematic review. The American journal of clinical nutrition, 84(2), 274–288. https://doi.org/10.1093/ajcn/84.1.274.

McKie, G. L., Medak, K. D., Knuth, C. M., Shamshoum, H., Townsend, L. K., Peppler, W. T., & Wright, D. C. (2019). Housing temperature affects the acute and chronic metabolic adaptations to exercise in mice. The Journal of physiology, 597(17), 4581–4600. https://doi.org/10.1113/JP278221.

Odegaard, J. I., & Chawla, A. (2013). Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science (New York, N.Y.), 339(6116), 172–177. https://doi.org/10.1126/science.1230721.

Ohyama, K., Nogusa, Y., Suzuki, K., Shinoda, K., Kajimura, S., & Bannai, M. (2015). A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice. American journal of physiology. Endocrinology and metabolism, 308(4), E315–E323. https://doi.org/10.1152/ajpendo.00354.2014.

Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature reviews. Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921.

Pereira, R. M., Botezelli, J. D., da Cruz Rodrigues, K. C., Mekary, R. A., Cintra, D. E., Pauli, J. R., da Silva, A. S. R., Ropelle, E. R., & de Moura, L. P. (2017). Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients, 9(4), 405. https://doi.org/10.3390/nu9040405.

Pranoto, A., Cahyono, M. B. A., Yakobus, R., Izzatunnisa, N., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Effendi, W. I., Wungu, C. D. K., & Yamaoka, Y. (2023a). Long-Term Resistance-Endurance Combined Training Reduces Pro-Inflammatory Cytokines in Young Adult Females with Obesity. Sports (Basel, Switzerland), 11(3), 54. https://doi.org/10.3390/sports11030054.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., & Yamaoka, Y. (2023b). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.

Prasetya, R. E., Umijati, S., & Rejeki, P. (2018). Effect of Moderate Intensity Exercise on Body Weight and Blood Estrogen Level Ovariectomized Mice. Majalah Kedokteran Bandung, 50(3), 147–151. https://doi.org/10.15395/mkb.v50n3.1368.

Racil, G., Ben Ounis, O., Hammouda, O., Kallel, A., Zouhal, H., Chamari, K., & Amri, M. (2013). Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. European journal of applied physiology, 113(10), 2531–2540. https://doi.org/10.1007/s00421-013-2689-5.

Raun, S. H., Henriquez-Olguín, C., Karavaeva, I., Ali, M., Møller, L. L. V., Kot, W., Castro-Mejía, J. L., Nielsen, D. S., Gerhart-Hines, Z., Richter, E. A., & Sylow, L. (2020). Housing temperature influences exercise training adaptations in mice. Nature communications, 11(1), 1560. https://doi.org/10.1038/s41467-020-15311-y.

Reilly, S. M., & Saltiel, A. R. (2017). Adapting to obesity with adipose tissue inflammation. Nature reviews. Endocrinology, 13(11), 633–643. https://doi.org/10.1038/nrendo.2017.90.

Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel, Switzerland), 11(4), 90. https://doi.org/10.3390/sports11040090.

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice. Retos, 51, 1194–1209. https://doi.org/10.47197/retos.v51.101189.

Sartorius, K., Sartorius, B., Madiba, T. E., & Stefan, C. (2018). Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. BMJ open, 8(2), e018449. https://doi.org/10.1136/bmjopen-2017-018449.

Schulze, M. B., Manson, J. E., Ludwig, D. S., Colditz, G. A., Stampfer, M. J., Willett, W. C., & Hu, F. B. (2004). Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA, 292(8), 927–934. https://doi.org/10.1001/jama.292.8.927.

Shi, Y. N., Liu, Y. J., Xie, Z., & Zhang, W. J. (2021). Fructose and metabolic diseases: too much to be good. Chinese medical journal, 134(11), 1276–1285. https://doi.org/10.1097/CM9.0000000000001545.

Singla, P., Bardoloi, A., & Parkash, A. A. (2010). Metabolic effects of obesity: A review. World journal of diabetes, 1(3), 76–88. https://doi.org/10.4239/wjd.v1.i3.76.

Smart, N. A., Larsen, A. I., Le Maitre, J. P., & Ferraz, A. S. (2011). Effect of exercise training on interleukin-6, tumour necrosis factor alpha and functional capacity in heart failure. Cardiology research and practice, 2011, 532620. https://doi.org/10.4061/2011/532620.

Sugama, K., Suzuki, K., Yoshitani, K., Shiraishi, K., & Kometani, T. (2013). Urinary excretion of cytokines versus their plasma levels after endurance exercise. Exercise immunology review, 19, 29–48.

Thorogood, A., Mottillo, S., Shimony, A., Filion, K. B., Joseph, L., Genest, J., Pilote, L., Poirier, P., Schiffrin, E. L., & Eisenberg, M. J. (2011). Isolated aerobic exercise and weight loss: a systematic review and meta-analysis of randomized controlled trials. The American journal of medicine, 124(8), 747–755. https://doi.org/10.1016/j.amjmed.2011.02.037.

Wang, X., Zhu, L., Li, X., Wang, X., Hao, R., & Li, J. (2022). Effects of high fructose corn syrup on intestinal microbiota structure and obesity in mice. NPJ science of food, 6(1), 17. https://doi.org/10.1038/s41538-022-00133-7.

Wolczyk, D., Zaremba-Czogalla, M., Hryniewicz-Jankowska, A., Tabola, R., Grabowski, K., Sikorski, A. F., & Augoff, K. (2016). TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cellular oncology (Dordrecht), 39(4), 353–363. https://doi.org/10.1007/s13402-016-0280-x.

Wondmkun Y. T. (2020). Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes, metabolic syndrome and obesity : targets and therapy, 13, 3611–3616. https://doi.org/10.2147/DMSO.S275898.

Zhao, D., Sun, Y., Tan, Y., Zhang, Z., Hou, Z., Gao, C., Feng, P., Zhang, X., Yi, W., & Gao, F. (2018). Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice. Oxidative medicine and cellular longevity, 2018, 4079041. https://doi.org/10.1155/2018/4079041.

Downloads

Publicado

2024-11-01

Como Citar

Izzatunnisa, N., Hakim, F. A., Putra, W. M. I., Rejeki, P. S., Herawati, L., Novida, H., Halim, S., & Pranoto, A. (2024). O exercício de intensidade moderada tem o efeito mais benéfico na resposta inflamatória em camundongos induzidos por frutose (Mus musculus). Retos, 60, 552–560. https://doi.org/10.47197/retos.v60.107772

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 3 4 > >>