O treinamento intervalado de intensidade contínua e moderada aumentou o VEGF e diminuiu os níveis de colesterol em ratas em dieta hipercalórica.

Autores

  • Fauqi Amalia Universitas Airlangga, Indonesia https://orcid.org/0009-0009-7773-6685
  • Gadis Meinar Sari Universitas Airlangga
  • Lina Lukitasari Universitas Airlangga, Indonesia
  • Zulhabri Othman Management and Science University
  • Lilik Herawati Universitas Airlangga, Indonesia
  • Ahmad Riyono Universitas Airlangga, Indonesia https://orcid.org/0009-0008-9533-464X

DOI:

https://doi.org/10.47197/retos.v59.107004

Palavras-chave:

obesity, interval training, continuous training, cholesterol, VEGF

Resumo

Este estudo investigou o impacto do treinamento contínuo de intensidade moderada e do treinamento intervalado de intensidade moderada nos níveis de VEGF e colesterol em ratas alimentadas com uma dieta hipercalórica. A pesquisa foi um pós-teste randomizado com desenho de grupo controle. Trinta e duas ratas foram distribuídas aleatoriamente em quatro grupos, P1 (n=8, grupo de dieta padrão), P2 (n=8, grupo de dieta hipercalórica), P3 (n=8, dieta hipercalórica combinada e intensidade moderada). dieta). treinamento contínuo), P4 (n=8, combinação de dieta hipercalórica e treinamento intervalado de intensidade moderada). Os grupos P2, P3, P4 receberam dieta padrão ad libitum mais solução de dextrose por 4 semanas. O grupo intervenção P3 foi submetido a natação mais carga de 6% do peso corporal por 10 minutos na primeira semana, 20 minutos na segunda semana e 30 minutos na terceira e quarta semanas. O grupo intervenção P4 realizou natação com proporção de 2:1 entre tempo de natação e repouso, acrescida de carga de 6% do peso corporal, aumentada progressivamente a cada semana. Os níveis de colesterol e VEGF foram medidos após a intervenção. Os níveis médios de colesterol no grupo de dieta hipercalórica combinada com MICT e MIIT foram significativamente mais baixos (p <0,001) em comparação com o grupo de dieta hipercalórica. O VEGF médio do grupo de dieta hipercalórica combinada com MICT foi significativamente maior (p = 0,025) em comparação ao grupo de dieta padrão e ao grupo de dieta hipercalórica, e o grupo de dieta hipercalórica combinada com MIIT foi significativamente maior (p = 0,004) em comparação ao grupo de dieta hipercalórica. Pode-se concluir que tanto o treinamento contínuo de intensidade moderada quanto o treinamento intervalado aumentaram significativamente o VEGF e reduziram os níveis de colesterol.

Palavras-chave: obesidade, treinamento intervalado, treinamento contínuo, colesterol, VEGF.

Biografias Autor

Fauqi Amalia , Universitas Airlangga, Indonesia

Master Program of Basic Medicine Science, Faculty of Medicine, Universitas Airlangga, Indonesia

Lina Lukitasari , Universitas Airlangga, Indonesia

Department of Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Indonesia

Zulhabri Othman , Management and Science University

Postgraɗuate Centre, Management and Science University

Lilik Herawati , Universitas Airlangga, Indonesia

Physiology Department, Faculty of Medicine, Universitas Airlangga

  Sport Health Science Program, Faculty of Medicine, Universitas Airlangga

Ahmad Riyono , Universitas Airlangga, Indonesia

Physiotherapy Program, Faculty of Vocational Study, Universitas Airlangga

Referências

Akiyama, T., Tachibana, I., Shirohara, H., Watanabe, N., & Otsuki, M. (1996). High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Research and Clinical Practice, 31(1–3), 27–35. https://doi.org/10.1016/0168-8227(96)01205-3

Conraads, V. M., Pattyn, N., De Maeyer, C., Beckers, P. J., Coeckelberghs, E., Cornelissen, V. A., Denollet, J., Frederix, G., Goetschalckx, K., Hoymans, V. Y., Possemiers, N., Schepers, D., Shivalkar, B., Voigt, J. U., Van Craenenbroeck, E. M., & Vanhees, L. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. International Journal of Cardiology, 179, 203–210. https://doi.org/10.1016/j.ijcard.2014.10.155

Costa, R. R., Barroso, B. M., Reichert, T., Vieira, A. F., & Kruel, L. F. M. (2020). Effects of supervised exercise training on lipid profile of children and adolescents: Systematic review, meta-analysis and meta-regression. Science and Sports, 35(6), 321–329. https://doi.org/10.1016/j.scispo.2020.02.007

Coswig, V. S., Barbalho, M., Raiol, R., Del Vecchio, F. B., Ramirez-Campillo, R., & Gentil, P. (2020). Effects of high vs moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. Journal of Translational Medicine, 18(1), 1–11. https://doi.org/10.1186/s12967-020-02261-8

Dimkpa, U., & Ugwu, A. C. (2010). Post-exercise systolic blood pressure recovery and adiposity in adults. Comparative Exercise Physiology, 7(2), 89–96. https://doi.org/10.1017/S1755254010000267

dos Santos, L. L., de Castro, J. B. P., Linhares, D. G., dos Santos, A. O. B., de Souza Cordeiro, L., Borba-Pinheiro, C. J., & de Souza Vale, R. G. (2023). Effects of physical exercise on hepatic biomarkers in adult individuals: A systematic review and meta-analysis. Retos, 49, 762–774. https://doi.org/10.47197/RETOS.V49.98939

Erekat, N. S., AL-Jarrah, M. D., & Al Khatib, A. J. (2014). Upregulation of Vascular Endothelial Growth Factor expression in the kidney could be reversed following treadmill exercise training in type I diabetic rats. World Journal of Nephrology and Urology, 5(1), 23–29. https://doi.org/10.14740/wjnu153e

Fisher, G., Brown, A. W., Bohan Brown, M. M., Alcorn, A., Noles, C., Winwood, L., Resuehr, H., George, B., Jeansonne, M. M., & Allison, D. B. (2015). High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: A randomized controlled trial. PLoS ONE, 10(10), 1–16. https://doi.org/10.1371/journal.pone.0138853

Foss, M. L., Keteyian, S. J., & Fox, E. L. (1998). Fox’s Physiological Basis for Exercise and Sport (6th ed.). William C Brown Pub.

Franco Gallegos, L. I., Robles Hernández, G. S. I., Montes Mata, K. J., & Aguirre Chávez, J. F. (2024). Beyond glycemic control: benefits of physical activity on the quality of life of people with type 2 diabetes mellitus: a narrative review. Retos, 53, 262–270. https://doi.org/10.47197/RETOS.V53.101811

Herawati, L., Sari, G. M., & Irawan, R. (2020). High glycemic index diet decreases insulin secretion without altering Akt and Pdx1 expression on pancreatic beta cells in mice. Chiang Mai University Journal of Natural Sciences, 19(3), 366–378. https://doi.org/10.12982/CMUJNS.2020.0024

Ishikawa-Takata, K., Ohta, T., Moritaki, K., Gotou, T., & Inoue, S. (2002). Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. European Journal of Clinical Nutrition, 56(7), 601–607. https://doi.org/10.1038/sj.ejcn.1601364

Lee, C.-S., Lee, S.-H., Sung, G.-D., & Baek, Y.-H. (2010). The effect of 4 weeks of treadmill exercise and protein diet on immunoglobulin and antioxidant enzyme in rats. Journal of Life Science, 20(10), 1483–1489. https://doi.org/10.5352/jls.2010.20.10.1483

Lilik, H. (2004). The decreases of postprandial blood glucose levels in interval and continuous moderate physical exercises. Thesis. Program Pasca Sarjana. Universitas Airlangga.

Liu, J., Zhu, L., & Su, Y. (2020). Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: A meta-analysis of randomized controlled trials. Frontiers in Physiology, 11(April), 1–18. https://doi.org/10.3389/fphys.2020.00214

Lutfi, A. R., Herawati, L., & Sari, G. M. (2021). Calorie restriction and moderate intensity continuous exercise decrease Free Fatty Acid levels and visceral fat weight on high calorie diet female mice. Indian Journal of Forensic Medicine & Toxicology, 15(2), 3665–3677. https://doi.org/10.37506/ijfmt.v15i2.14944

Mann, S., Beedie, C., & Jimenez, A. (2014). Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Medicine, 44(2), 211–221. https://doi.org/10.1007/s40279-013-0110-5

Mohammadi, V. G. M., & Chodari, H. D. L. (2016). Effects of crocin and voluntary exercise, alone or combined, on heart VEGF‑A and HOMA‑IR of HFD/STZ induced type 2 diabetic rats. Journal of Endocrinological Investigation, 39(10), 1179–1186. https://doi.org/10.1007/s40618-016-0456-2

Murray, R. K., Graner, D. K., & Rodwell, V. W. (2006). Biokimia Harper (Edisi 27). EGC.

Oemiati, R., & Rustika, R. (2014). Penyakit Jantung Koroner [PJK] dengan obesitas di kelurahan Kebon Kelapa, Bogor [Baseline studi kohort faktor risiko PTM] (Coronary Heart Disease [CHD] with obesity in Kebon Kalapa Village, Bogor [Baseline cohort study of non-communicable diseases risk factor]). Buletin Penelitian Sistem Kesehatan, 17(4), 385–393. https://media.neliti.com/media/publications/20918-ID-coronary-heart-disease-chd-with-obesity-in-kebon-kalapa-village-bogor-baseline-c.pdf

Ogasawara, J., Izawa, T., Sakurai, T., Sakurai, T., Shirato, K., Ishibashi, Y., Ishida, H., Ohno, H., & Kizaki, T. (2015). The molecular mechanism underlying continuous exercise training-induced adaptive changes of lipolysis in white adipose cells. Journal of Obesity, 2015. https://doi.org/10.1155/2015/473430

Poole, D. C., Copp, S. W., Colburn, T. D., Craig, J. C., Allen, D. L., Sturek, M., O’Leary, D. S., Zucker, I. H., & Musch, T. I. (2020). Guidelines for animal exercise and training protocols for cardiovascular studies. American Journal of Physiology-Heart and Circulatory Physiology, 318(5), H1100–H1138. https://doi.org/10.1152/ajpheart.00697.2019

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Ihsan, M., Herawati, L., Rahmanto, I., & Halim, S. (2024). Aerobic exercise increases release of Growth Hormone in the blood circulation in obese women. Retos, 51, 726–731. https://doi.org/10.47197/retos.v51.99944

Pulido, R. O., & Ramírez Ortega, M. L. (2020). Physical activity, cognition, and academic performance: a brief review from the neurosciences. Retos, 2041(38), 868–878. https://doi.org/10.47197/retos.v38i38.72378

Putri, E. A. C., Argarini, R., Purwanto, B., & Herawati, L. (2018). Intermittent physical training decreases peak of blood glucose level after meals in rats. In: Proceedings of Surabaya International Physiology Seminar (SIPS 2017), pp 76-79

Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Medicine, 45(5), 679–692. https://doi.org/10.1007/s40279-015-0321-z

Regina de Sousa, T., Gabriel da Silva Alexandrino, W., Souza, A., Faúndez-Casanova, C., Jane dos Santos Pascoini, M., Andréia Mochi Awada, M., de Paula, R., Merchan Ferraz Grizzo, F., Oltramari, K., Westphal-Nardo, G., & Nardo Junior, N. (2024). Effects of physical activity in adults with severe obesity: a systematic review. Retos, 53(424), 671–680. https://recyt.fecyt.es/index.php/retos/index

Riyono, A., Tinduh, D., Othman, Z., & Herawati, L. (2022). Moderate intensity continuous and interval training affect visceral fat and insulin resistance model in female rat exposed high calorie diet. Comparative Exercise Physiology, 18(5), 403-411. https://doi.org/10.3920/CEP220013

Roohbakhsh, E., Barari, A., & Abbaszadeh, H. (2021). The effect of interval training consuming fenugreek seed extract on FGF-21 and VEGF gene expression in patient with coronary artery disease. Quarterly of The Horizon of Medical Science, 27(2), 130–147. https://doi.org/http://dx.doi.org/10.32598/hms.27.2.3456.1

Sabzevari Rad, R., Shirvani, H., Mahmoodzadeh Hosseini, H., Shamsoddini, A., & Samadi, M. (2020). Micro RNA-126 promoting angiogenesis in diabetic heart by VEGF/Spred-1/Raf-1 pathway: effects of high-intensity interval training. Journal of Diabetes and Metabolic Disorders, 19(2), 1089–1096. https://doi.org/10.1007/s40200-020-00610-4

Sanhueza-Morales, V., Hermosilla-Palma, F., Reyes-Amigo, T., & Gómez-Álvarez, N. (2024). Effect of physical exercise on cardiometabolic risk factors in preadolescents and adolescents with severe obesity: a systematic review. Retos, 56, 248–257. https://doi.org/10.47197/retos.v56.103920

Sari, A. R., Risdaryanto, R. D., Pradipta, M. H., Al Qorni, U., Rejeki, P. S., Argarini, R., Halim, S., & Pranoto, A. (2024). Impact of time-resricted feeding and aerobic exercise combination on promotes myokine levels and improve body composition in obese women. Retos, 53, 1–10. https://doi.org/10.47197/retos.v53.102429

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The effect of exercise intensity on anthropometric parameters and renal damage in high fructose-induced mice. Retos, 51(2022), 1194–1209. https://doi.org/10.47197/RETOS.V51.101189

Shah, A., Mehta, N., & Reilly, M. P. (2008). Adipose inflammation, insulin resistance, and cardiovascular disease. Journal of Parenteral and Enteral Nutrition, 32(6), 638–644. https://doi.org/10.1177/0148607108325251

Su, L. Q., Fu, J. M., Sun, S. L., Zhao, G. G., Cheng, W., Dou, C. C., & Quan, M. H. (2019). Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. PLoS ONE, 14(1), 1–22. https://doi.org/10.1371/journal.pone.0210644

Sylviana, N., Goenawan, H., Susanti, Y., Lesmana, R., Megantara, I., & Setiawan. (2022). Effect of different intensities aerobic exercise to cardiac angiogenesis regulation on Wistar rats. Polish Journal of Veterinary Sciences, 25(1), 119–128. https://doi.org/10.24425/pjvs.2022.140848

Woods, A. D. (2010). Cholesterol levels. Nursing, 40(8), 31. https://doi.org/10.1097/01.NURSE.0000383897.65472.6b

Wu, C., Lin, F., Qiu, S., & Jiang, Z. (2014). The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention. PLoS ONE, 9(6), 1–8. https://doi.org/10.1371/journal.pone.0099155

Yazdani, F., Shahidi, F., & Karimi, P. (2020). The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. Journal of Physiology and Biochemistry, 76(2), 291–299. https://doi.org/10.1007/s13105-020-00733-5

Publicado

2024-10-02

Como Citar

Amalia, F. ., Meinar Sari, G. ., Lukitasari, L. ., Othman, Z. ., Herawati, L. ., & Riyono, A. . (2024). O treinamento intervalado de intensidade contínua e moderada aumentou o VEGF e diminuiu os níveis de colesterol em ratas em dieta hipercalórica. Retos, 59, 130–137. https://doi.org/10.47197/retos.v59.107004

Edição

Secção

Artigos de caráter científico: trabalhos de pesquisas básicas e/ou aplicadas.

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 > >>