El entrenamiento continuo y por intervalos de intensidad moderada aumentó el VEGF y disminuyó los niveles de colesterol en ratas hembras con dieta alta en calorías (Moderate intensity continuous and interval training increased VEGF and decreased cholesterol levels in female rats high calorie diet)
DOI:
https://doi.org/10.47197/retos.v59.107004Palabras clave:
obesidad, entrenamiento interválico, entrenamiento continuo, colesterol, VEGFResumen
Este estudio investigó el impacto del entrenamiento continuo de intensidad moderada y el entrenamiento en intervalos de intensidad moderada sobre los niveles de VEGF y colesterol en ratas hembras que recibieron una dieta alta en calorías. La investigación fue un post-test aleatorizado con un diseño de grupo control. Se asignaron aleatoriamente treinta y dos ratas hembra a cuatro grupos, P1 (n=8, grupo de dieta estándar), P2 (n=8, grupo de dieta alta en calorías), P3 (n=8, dieta combinada alta en calorías y dieta de intensidad moderada). entrenamiento continuo), P4 (n=8, combinación de dieta hipercalórica y entrenamiento interválico de intensidad moderada). Los grupos P2, P3, P4 recibieron una dieta estándar ad libitum más una solución de dextrosa durante 4 semanas. El grupo de intervención de P3 se sometió a natación más un 6% de carga de peso corporal durante 10 minutos en la primera semana, 20 minutos en la segunda semana y 30 minutos en la tercera y cuarta semana. El grupo de intervención de P4 se sometió a natación con una proporción de 2:1 entre tiempo de natación y descanso, más un 6% de carga de peso corporal, incrementada progresivamente cada semana. Los niveles de colesterol y VEGF se midieron después de la intervención. Los niveles medios de colesterol en el grupo de dieta alta en calorías combinada con MICT y MIIT fueron significativamente más bajos (p < 0.001) en comparación con el grupo de dieta alta en calorías. El VEGF medio del grupo de dieta alta en calorías combinado con MICT fue significativamente más alto (p = 0.025) en comparación con el grupo de dieta estándar y el grupo de dieta alta en calorías, y el grupo de dieta alta en calorías combinado con MIIT fue significativamente más alto (p = 0.004) en comparación con el grupo de dieta alta en calorías. Se puede concluir que tanto el entrenamiento continuo de intensidad moderada como el entrenamiento por intervalos aumentaron significativamente el VEGF y redujeron los niveles de colesterol.
Palabras clave: obesidad, entrenamiento interválico, entrenamiento continuo, colesterol, VEGF.
Abstract This study investigated the impact of moderate-intensity continuous training and moderate-intensity interval training on VEGF and cholesterol levels in female rats given high-calorie diet. The research was a randomized post-test with only a control group design. Thirty-two female rats were randomly assigned to four groups, P1 (n=8, standard diet group), P2 (n=8, high-calorie diet group), P3 (n=8, combination high-calorie diet and moderate intensity continuous training), P4 (n=8, combination high-calorie diet and moderate intensity interval training). The P2,P3,P4 consisted of an ad libitum standard diet plus a dextrose solution for 4 weeks. The intervention group of P3 underwent swimming plus 6% load of body weight for 10 minutes in first week, 20 minutes in second week, and 30 minutes in third and fourth week. The intervention group of P4 underwent swimming with a ratio of 2:1 between swimming and rest time, plus 6% load of body weight, progressively increased each week. Cholesterol and VEGF levels were measured post-intervention. The mean cholesterol levels in both high-calorie diet group combined with MICT and MIIT were significantly lower (p < 0.001) compared to high-calorie diet group. The mean VEGF of high-calorie diet group combined with MICT was significantly higher (p = 0.025) compared to standard and high-calorie diet group, and high-calorie diet group combined with MIIT was significantly higher (p = 0.004) compared to high-calorie diet group. It can be concluded that both moderate-intensity continuous and interval training significantly increased VEGF and reduced cholesterol levels.
Key Words: obesity, interval training, continuous training, cholesterol, VEGF.
Citas
Akiyama, T., Tachibana, I., Shirohara, H., Watanabe, N., & Otsuki, M. (1996). High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Research and Clinical Practice, 31(1–3), 27–35. https://doi.org/10.1016/0168-8227(96)01205-3
Conraads, V. M., Pattyn, N., De Maeyer, C., Beckers, P. J., Coeckelberghs, E., Cornelissen, V. A., Denollet, J., Frederix, G., Goetschalckx, K., Hoymans, V. Y., Possemiers, N., Schepers, D., Shivalkar, B., Voigt, J. U., Van Craenenbroeck, E. M., & Vanhees, L. (2015). Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. International Journal of Cardiology, 179, 203–210. https://doi.org/10.1016/j.ijcard.2014.10.155
Costa, R. R., Barroso, B. M., Reichert, T., Vieira, A. F., & Kruel, L. F. M. (2020). Effects of supervised exercise training on lipid profile of children and adolescents: Systematic review, meta-analysis and meta-regression. Science and Sports, 35(6), 321–329. https://doi.org/10.1016/j.scispo.2020.02.007
Coswig, V. S., Barbalho, M., Raiol, R., Del Vecchio, F. B., Ramirez-Campillo, R., & Gentil, P. (2020). Effects of high vs moderate-intensity intermittent training on functionality, resting heart rate and blood pressure of elderly women. Journal of Translational Medicine, 18(1), 1–11. https://doi.org/10.1186/s12967-020-02261-8
Dimkpa, U., & Ugwu, A. C. (2010). Post-exercise systolic blood pressure recovery and adiposity in adults. Comparative Exercise Physiology, 7(2), 89–96. https://doi.org/10.1017/S1755254010000267
dos Santos, L. L., de Castro, J. B. P., Linhares, D. G., dos Santos, A. O. B., de Souza Cordeiro, L., Borba-Pinheiro, C. J., & de Souza Vale, R. G. (2023). Effects of physical exercise on hepatic biomarkers in adult individuals: A systematic review and meta-analysis. Retos, 49, 762–774. https://doi.org/10.47197/RETOS.V49.98939
Erekat, N. S., AL-Jarrah, M. D., & Al Khatib, A. J. (2014). Upregulation of Vascular Endothelial Growth Factor expression in the kidney could be reversed following treadmill exercise training in type I diabetic rats. World Journal of Nephrology and Urology, 5(1), 23–29. https://doi.org/10.14740/wjnu153e
Fisher, G., Brown, A. W., Bohan Brown, M. M., Alcorn, A., Noles, C., Winwood, L., Resuehr, H., George, B., Jeansonne, M. M., & Allison, D. B. (2015). High intensity interval- vs moderate intensity- training for improving cardiometabolic health in overweight or obese males: A randomized controlled trial. PLoS ONE, 10(10), 1–16. https://doi.org/10.1371/journal.pone.0138853
Foss, M. L., Keteyian, S. J., & Fox, E. L. (1998). Fox’s Physiological Basis for Exercise and Sport (6th ed.). William C Brown Pub.
Franco Gallegos, L. I., Robles Hernández, G. S. I., Montes Mata, K. J., & Aguirre Chávez, J. F. (2024). Beyond glycemic control: benefits of physical activity on the quality of life of people with type 2 diabetes mellitus: a narrative review. Retos, 53, 262–270. https://doi.org/10.47197/RETOS.V53.101811
Herawati, L., Sari, G. M., & Irawan, R. (2020). High glycemic index diet decreases insulin secretion without altering Akt and Pdx1 expression on pancreatic beta cells in mice. Chiang Mai University Journal of Natural Sciences, 19(3), 366–378. https://doi.org/10.12982/CMUJNS.2020.0024
Ishikawa-Takata, K., Ohta, T., Moritaki, K., Gotou, T., & Inoue, S. (2002). Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. European Journal of Clinical Nutrition, 56(7), 601–607. https://doi.org/10.1038/sj.ejcn.1601364
Lee, C.-S., Lee, S.-H., Sung, G.-D., & Baek, Y.-H. (2010). The effect of 4 weeks of treadmill exercise and protein diet on immunoglobulin and antioxidant enzyme in rats. Journal of Life Science, 20(10), 1483–1489. https://doi.org/10.5352/jls.2010.20.10.1483
Lilik, H. (2004). The decreases of postprandial blood glucose levels in interval and continuous moderate physical exercises. Thesis. Program Pasca Sarjana. Universitas Airlangga.
Liu, J., Zhu, L., & Su, Y. (2020). Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: A meta-analysis of randomized controlled trials. Frontiers in Physiology, 11(April), 1–18. https://doi.org/10.3389/fphys.2020.00214
Lutfi, A. R., Herawati, L., & Sari, G. M. (2021). Calorie restriction and moderate intensity continuous exercise decrease Free Fatty Acid levels and visceral fat weight on high calorie diet female mice. Indian Journal of Forensic Medicine & Toxicology, 15(2), 3665–3677. https://doi.org/10.37506/ijfmt.v15i2.14944
Mann, S., Beedie, C., & Jimenez, A. (2014). Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Medicine, 44(2), 211–221. https://doi.org/10.1007/s40279-013-0110-5
Mohammadi, V. G. M., & Chodari, H. D. L. (2016). Effects of crocin and voluntary exercise, alone or combined, on heart VEGF‑A and HOMA‑IR of HFD/STZ induced type 2 diabetic rats. Journal of Endocrinological Investigation, 39(10), 1179–1186. https://doi.org/10.1007/s40618-016-0456-2
Murray, R. K., Graner, D. K., & Rodwell, V. W. (2006). Biokimia Harper (Edisi 27). EGC.
Oemiati, R., & Rustika, R. (2014). Penyakit Jantung Koroner [PJK] dengan obesitas di kelurahan Kebon Kelapa, Bogor [Baseline studi kohort faktor risiko PTM] (Coronary Heart Disease [CHD] with obesity in Kebon Kalapa Village, Bogor [Baseline cohort study of non-communicable diseases risk factor]). Buletin Penelitian Sistem Kesehatan, 17(4), 385–393. https://media.neliti.com/media/publications/20918-ID-coronary-heart-disease-chd-with-obesity-in-kebon-kalapa-village-bogor-baseline-c.pdf
Ogasawara, J., Izawa, T., Sakurai, T., Sakurai, T., Shirato, K., Ishibashi, Y., Ishida, H., Ohno, H., & Kizaki, T. (2015). The molecular mechanism underlying continuous exercise training-induced adaptive changes of lipolysis in white adipose cells. Journal of Obesity, 2015. https://doi.org/10.1155/2015/473430
Poole, D. C., Copp, S. W., Colburn, T. D., Craig, J. C., Allen, D. L., Sturek, M., O’Leary, D. S., Zucker, I. H., & Musch, T. I. (2020). Guidelines for animal exercise and training protocols for cardiovascular studies. American Journal of Physiology-Heart and Circulatory Physiology, 318(5), H1100–H1138. https://doi.org/10.1152/ajpheart.00697.2019
Pranoto, A., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Ihsan, M., Herawati, L., Rahmanto, I., & Halim, S. (2024). Aerobic exercise increases release of Growth Hormone in the blood circulation in obese women. Retos, 51, 726–731. https://doi.org/10.47197/retos.v51.99944
Pulido, R. O., & Ramírez Ortega, M. L. (2020). Physical activity, cognition, and academic performance: a brief review from the neurosciences. Retos, 2041(38), 868–878. https://doi.org/10.47197/retos.v38i38.72378
Putri, E. A. C., Argarini, R., Purwanto, B., & Herawati, L. (2018). Intermittent physical training decreases peak of blood glucose level after meals in rats. In: Proceedings of Surabaya International Physiology Seminar (SIPS 2017), pp 76-79
Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Medicine, 45(5), 679–692. https://doi.org/10.1007/s40279-015-0321-z
Regina de Sousa, T., Gabriel da Silva Alexandrino, W., Souza, A., Faúndez-Casanova, C., Jane dos Santos Pascoini, M., Andréia Mochi Awada, M., de Paula, R., Merchan Ferraz Grizzo, F., Oltramari, K., Westphal-Nardo, G., & Nardo Junior, N. (2024). Effects of physical activity in adults with severe obesity: a systematic review. Retos, 53(424), 671–680. https://recyt.fecyt.es/index.php/retos/index
Riyono, A., Tinduh, D., Othman, Z., & Herawati, L. (2022). Moderate intensity continuous and interval training affect visceral fat and insulin resistance model in female rat exposed high calorie diet. Comparative Exercise Physiology, 18(5), 403-411. https://doi.org/10.3920/CEP220013
Roohbakhsh, E., Barari, A., & Abbaszadeh, H. (2021). The effect of interval training consuming fenugreek seed extract on FGF-21 and VEGF gene expression in patient with coronary artery disease. Quarterly of The Horizon of Medical Science, 27(2), 130–147. https://doi.org/http://dx.doi.org/10.32598/hms.27.2.3456.1
Sabzevari Rad, R., Shirvani, H., Mahmoodzadeh Hosseini, H., Shamsoddini, A., & Samadi, M. (2020). Micro RNA-126 promoting angiogenesis in diabetic heart by VEGF/Spred-1/Raf-1 pathway: effects of high-intensity interval training. Journal of Diabetes and Metabolic Disorders, 19(2), 1089–1096. https://doi.org/10.1007/s40200-020-00610-4
Sanhueza-Morales, V., Hermosilla-Palma, F., Reyes-Amigo, T., & Gómez-Álvarez, N. (2024). Effect of physical exercise on cardiometabolic risk factors in preadolescents and adolescents with severe obesity: a systematic review. Retos, 56, 248–257. https://doi.org/10.47197/retos.v56.103920
Sari, A. R., Risdaryanto, R. D., Pradipta, M. H., Al Qorni, U., Rejeki, P. S., Argarini, R., Halim, S., & Pranoto, A. (2024). Impact of time-resricted feeding and aerobic exercise combination on promotes myokine levels and improve body composition in obese women. Retos, 53, 1–10. https://doi.org/10.47197/retos.v53.102429
Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The effect of exercise intensity on anthropometric parameters and renal damage in high fructose-induced mice. Retos, 51(2022), 1194–1209. https://doi.org/10.47197/RETOS.V51.101189
Shah, A., Mehta, N., & Reilly, M. P. (2008). Adipose inflammation, insulin resistance, and cardiovascular disease. Journal of Parenteral and Enteral Nutrition, 32(6), 638–644. https://doi.org/10.1177/0148607108325251
Su, L. Q., Fu, J. M., Sun, S. L., Zhao, G. G., Cheng, W., Dou, C. C., & Quan, M. H. (2019). Effects of HIIT and MICT on cardiovascular risk factors in adults with overweight and/or obesity: A meta-analysis. PLoS ONE, 14(1), 1–22. https://doi.org/10.1371/journal.pone.0210644
Sylviana, N., Goenawan, H., Susanti, Y., Lesmana, R., Megantara, I., & Setiawan. (2022). Effect of different intensities aerobic exercise to cardiac angiogenesis regulation on Wistar rats. Polish Journal of Veterinary Sciences, 25(1), 119–128. https://doi.org/10.24425/pjvs.2022.140848
Woods, A. D. (2010). Cholesterol levels. Nursing, 40(8), 31. https://doi.org/10.1097/01.NURSE.0000383897.65472.6b
Wu, C., Lin, F., Qiu, S., & Jiang, Z. (2014). The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention. PLoS ONE, 9(6), 1–8. https://doi.org/10.1371/journal.pone.0099155
Yazdani, F., Shahidi, F., & Karimi, P. (2020). The effect of 8 weeks of high-intensity interval training and moderate-intensity continuous training on cardiac angiogenesis factor in diabetic male rats. Journal of Physiology and Biochemistry, 76(2), 291–299. https://doi.org/10.1007/s13105-020-00733-5
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess