Both High-Intensity Interval and Moderate-Intensity Continuous Training Decrease Fetuin-A Levels in High Fat Diet Fed Male Rats
DOI:
https://doi.org/10.47197/retos.v56.104318Keywords:
interval training, continuous training, obesity, insulin resistance, healthy lifestyleAbstract
Background: Fetuin-A is a hepatokine that increases in obesity, and a high-fat diet (HFD) contributes to this condition. Obesity is characterized by increased body mass index (BMI) and is correlated to insulin resistance. This study aims to analyze the difference between High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT) on fetuin-A, insulin, fasting blood glucose (FBG) levels, and BMI in HFD-fed rats. Methods: Twenty-four male Wistar rats were divided into four groups: CD (standard diet), HFD (HFD only), HFD-IT (HFD and HIIT), and HFD-CT (HFD and MICT). HFD consisted of a standard diet with an additional 2 mL/200-gram body weight of lard oil daily. In the HFD-IT group, swimming was performed with a 9% body weight load with short duration and intermittent rest periods, while the HFD-CT group was given a 6% body weight load and continuous swimming. Swimming was conducted five days a week for four weeks. Fetuin-A and insulin levels were measured using enzyme-linked immunosorbent assay (ELISA) method, and FBG levels were measured using a glucometer. Results: Fetuin-A levels were significantly lower in the HFD-IT and HFD-CT groups compared to the HFD group (p<0.05). The HFD-CT group had a significant decrease in FBG levels (p<0.05), but the HFD-IT group did not. There were no differences in BMI and insulin levels between groups after four weeks of treatment (p>0.05). Conclusion: HIIT and MICT have similar effectiveness in reducing fetuin-A levels. In addition, MICT also managed to reduce FBG levels.
Keywords: interval training, continuous training, high-fat diet, fetuin-A, insulin, healthy lifestyle.
References
Ahmed, S. R., Bellamkonda, S., Zilbermint, M., Wang, J., & Kalyani, R. R. (2020). Effects of the low carbohydrate, high fat diet on glycemic control and body weight in patients with type 2 diabetes: experience from a community-based cohort. BMJ Open Diabetes Research & Care, 8(1), e000980. https://doi.org/10.1136/bmjdrc-2019-000980
Ahn, M. B., Kim, S. K., Kim, S. H., Cho, W. K., Suh, J. S., Cho, K. S., Suh, B. K., & Jung, M. H. (2021). Clinical significance of the fetuin-a-to-adiponectin ratio in obese children and adolescents with diabetes mellitus. Children, 8(1155). https://doi.org/10.3390/children8121155
Atakan, M. M., Li, Y., Koşar, Ş. N., Turnagöl, H. H., & Yan, X. (2021). Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. International Journal of Environmental Research and Public Health, 18(13). https://doi.org/10.3390/ijerph18137201
Azhir, S., Alijani, E., Martinez-Huenchullan, S., Amni, H., Baker, J. S., & Farhani, F. (2022). Effects of Exercise Intensity on Soleus Muscle Myostatin and Follistatin Levels of Hyperglycaemic Rats (Efectos de la intensidad del ejercicio sobre la miostatina y folistatina del músculo sóleo de ratas hiperglicémicas). Retos, 44, 889–896. https://doi.org/10.47197/retos.v44i0.91770
Bhattacharya, S., Kundu, R., Dasgupta, S., & Bhattacharya, S. (2012). Mechanism of Lipid Induced Insulin Resistance: An Overview. Endocrinology and Metabolism, 27(1), 12. https://doi.org/10.3803/enm.2012.27.1.12
Blue, M. N. M., Smith-ryan, A. E., Trexler, E. T., & Hirsch, K. R. (2018). The effects of high intensity interval training on muscle size and quality in overweight and obese adults. Journal of Science and Medicine in Sport, 21(2), 207–212. https://doi.org/10.1016/j.jsams.2017.06.001
Boutari, C., & Mantzoros, C. S. (2022). A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism: Clinical and Experimental, 133(155217). https://doi.org/10.1016/j.metabol.2022.155217
Boutcher, S. H. (2011). High-intensity intermittent exercise and fat loss. Journal of Obesity, 2011. https://doi.org/10.1155/2011/868305
D’Amuri, A., Sanz, J. M., Capatti, E., Vece, F. Di, Vaccari, F., Lazzer, S., Zuliani, G., Nora, E. D., & Passaro, A. (2021). Effectiveness of high intensity interval training for weight loss in adults with obesity : a randomised controlled non inferiority trial. BMJ Open Sport & Exercise Medicine, 1–10. https://doi.org/10.1136/bmjsem-2020-001021
da Silva, G. H. C., Marques, D. C. de S., Santos, I. C., de Oliveira, F. M., Marques, M. G. de S., Júnior, R. B. dos S., Pendić, L., & Branco, B. H. M. (2022). Effects of a multidisciplinary approach on the anthropometric and body composition responses of obese adolescents (Efectos de un abordaje multidisciplinario sobre las respuestas antropométricas y de composición corporal de adolescentes obesos). Retos, 2041(46), 323–329. https://doi.org/10.47197/retos.v46.93066
Devi, A. I., Rejeki, P. S., Argarini, R., Shakila, N., Yosnengsih, Y., Ilmi, S. B. Z., Karimullah, A., Ayubi, N., & Herawati, L. (2023). Response of TNF-α Levels and Blood Glucose Levels after Acute High-Intensity Intermittent Exercise in Overweight Women. Retos, 48, 101–105. https://doi.org/10.47197/retos.v48.94305
Ennequin, G., Sirvent, P., & Whitham, M. (2019). Role of exercise-induced hepatokines in metabolic disorders. American Journal of Physiology - Endocrinology and Metabolism, 317(1), E11–E24. https://doi.org/10.1152/ajpendo.00433.2018
Etienne, Q., Lebrun, V., Komuta, M., Navez, B., Thissen, J. P., Leclercq, I. A., & Lanthier, N. (2022). Fetuin-A in Activated Liver Macrophages Is a Key Feature of Non-Alcoholic Steatohepatitis. Metabolites, 12(7). https://doi.org/10.3390/metabo12070625
Fajardo, R. J., Karim, L., Calley, V. I., & Bouxsein, M. L. (2014). A review of rodent models of type 2 diabetic skeletal fragility. Journal of Bone and Mineral Research, 29(5), 1025–1040. https://doi.org/10.1002/jbmr.2210
Flanagan, A. M., Brown, J. L., Santiago, C. A., Aad, P. Y., Spicer, L. J., & Spicer, M. T. (2008). High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. Journal of Nutritional Biochemistry, 19(8), 505–513. https://doi.org/10.1016/j.jnutbio.2007.06.005
Francis, U. A., Melford, U. E., Hope, K. O., Chikodili, A. M., Kennedy, C. O., Isaiah, O. A., Eghosa, E. I., & and, D. C. N. (2022). Obesity related alterations in kidney function and plasma cytokines: Impact of sibutramine and diet in male Wistar rats. African Journal of Pharmacy and Pharmacology, 16(10), 161–172. https://doi.org/10.5897/ajpp2022.5305
Gobatto, C. A., de Mello, M. A. R., Sibuya, C. Y., de Azevedo, J. R. M., dos Santos, L. A., & Kokubun, E. (2001). Maximal lactate steady state in rats submitted to swimming exercise. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 130(1), 21–27. https://doi.org/10.1016/s1095-6433(01)00362-2
Hall, G. Van. (2015). The Physiological Regulation of Skeletal Muscle Fatty Acid Supply and Oxidation During Moderate-Intensity Exercise. Sports Medicine, 45(1), 23–32. https://doi.org/10.1007/s40279-015-0394-8
Herawati, L., Lukitasari, L., Rimbun, R., Purwanto, B., & Sari, G. M. (2019). The combination of exercise and ascorbic acid decrease blood glucose level and tend to ameliorate pancreatic islets area on high carbohydrate diet rats. International Journal of Applied Pharmaceutics, 11(Special Issue 3), 20–24. https://doi.org/10.22159/ijap.2019.v11s3.M1019
Khabiri, P., Rahimi, M. R., Rashidi, I., & Nedaei, S. E. (2023). Impacts of an 8-week regimen of aged garlic extract and aerobic exercise on the levels of Fetuin-A and inflammatory markers in the liver and visceral fat tissue of obese male rats. Clinical Nutrition ESPEN, 58, 79–88. https://doi.org/10.1016/j.clnesp.2023.09.004
Kong, Z., Sun, S., Liu, M., & Shi, Q. (2016). Short-Term High-Intensity Interval Training on Body Composition and Blood Glucose in Overweight and Obese Young Women. Journal of Diabetes Research, 2016, 10–12. https://doi.org/10.1155/2016/4073618
Little, T. J., Feltrin, K. L., Horowitz, M., Meyer, J. H., Wishart, J., Chapman, I. M., & Feinle-Bisset, C. (2008). A high-fat diet raises fasting plasma CCK but does not affect upper gut motility, PYY, and ghrelin, or energy intake during CCK-8 infusion in lean men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 294(1), 45–51. https://doi.org/10.1152/ajpregu.00597.2007
Liu, J., Zhu, L., & Su, Y. (2020). Comparative effectiveness of high-intensity interval training and moderate-intensity continuous training for cardiometabolic risk factors and cardiorespiratory fitness in childhood obesity: A meta-analysis of randomized controlled trials. Frontiers in Physiology, 11(April), 1–18. https://doi.org/10.3389/fphys.2020.00214
Liu, Z., Patil, I. Y., Jiang, T., Sancheti, H., Walsh, J. P., Stiles, B. L., Yin, F., & Cadenas, E. (2015). High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity. PLoS ONE, 10(5), 1–16. https://doi.org/10.1371/journal.pone.0128274
Lundsgaard, A. M., Holm, J. B., Sjøberg, K. A., Bojsen-Møller, K. N., Myrmel, L. S., Fjære, E., Jensen, B. A. H., Nicolaisen, T. S., Hingst, J. R., Hansen, S. L., Doll, S., Geyer, P. E., Deshmukh, A. S., Holst, J. J., Madsen, L., Kristiansen, K., Wojtaszewski, J. F. P., Richter, E. A., & Kiens, B. (2019). Mechanisms Preserving Insulin Action during High Dietary Fat Intake. Cell Metabolism, 29(1), 50–63. https://doi.org/10.1016/j.cmet.2018.08.022
Malin, S. K., Del Rincon, J. P., Huang, H., & Kirwan, J. P. (2014). Exercise-induced lowering of fetuin-A may increase hepatic insulin sensitivity. Medicine and Science in Sports and Exercise, 46(11), 2085–2090. https://doi.org/10.1249/MSS.0000000000000338
Maturana, F. M., Martus, P., Zipfel, S., & NIEß, A. M. (2021). Effectiveness of HIIE versus MICT in Improving Cardiometabolic Risk Factors in Health and Disease: A Meta-analysis. Medicine and Science in Sports and Exercise, 53(3), 559–573. https://doi.org/10.1249/MSS.0000000000002506
Meiliana, A., & Wijaya, A. (2009). Peroxisome Proliferator–Activated Receptors and The Metabolic Syndrome. The Indonesian Biomedical Journal, 1(1), 4. https://doi.org/10.18585/inabj.v1i1.79
Miller, L. J., Harikumar, K. G., Wootten, D., & Sexton, P. M. (2021). Roles of Cholecystokinin in the Nutritional Continuum. Physiology and Potential Therapeutics. Frontiers in Endocrinology, 12(June), 1–7. https://doi.org/10.3389/fendo.2021.684656
Petridou, A., Siopi, A., & Mougios, V. (2019). Exercise in the management of obesity. Metabolism: Clinical and Experimental, 92, 163–169. https://doi.org/10.1016/j.metabol.2018.10.009
Rahayu, F. K., Dwiningsih, S. R., Sa’adi, A., & Herawati, L. (2021). Effects of different intensities of exercise on folliculogenesis in mice: Which is better? Clinical and Experimental Reproductive Medicine, 48(1), 43–49. https://doi.org/10.5653/cerm.2020.03937
Ramírez-Vélez, R., García-Hermoso, A., Hackney, A. C., & Izquierdo, M. (2019). Effects of exercise training on Fetuin-a in obese, type 2 diabetes and cardiovascular disease in adults and elderly: A systematic review and Meta-analysis. Lipids in Health and Disease, 18(1), 1–11. https://doi.org/10.1186/s12944-019-0962-2
Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic–Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports, 11(4), 1–13. https://doi.org/10.3390/sports11040090
Riddell, M. C., Pooni, R., Yavelberg, L., Li, Z., Kollman, C., Brown, R. E., Li, A., & Aronson, R. (2019). Reproducibility in the cardiometabolic responses to high-intensity interval exercise in adults with type 1 diabetes. Diabetes Research and Clinical Practice, 148, 137–143. https://doi.org/10.1016/j.diabres.2019.01.003
Rising, R., & Lifshitz, F. (2006). Energy expenditures & physical activity in rats with chronic suboptimal nutrition. Nutrition and Metabolism, 3(11), 1–9. https://doi.org/10.1186/1743-7075-3-11
Riyono, A., Tinduh, D., Othman, Z., & Herawati, L. (2022). Moderate intensity continuous and interval training affect visceral fat and insulin resistance model in female rat exposed high calorie diet. Comparative Exercise Physiology, 15(5), 403–411. DOI 10.3920/CEP220013
Robinson, E., Durrer, C., Simtchouk, S., Jung, M. E., Bourne, J. E., Voth, E., Little, J. P., & Short-term, L. J. P. (2015). Short-term high-intensity interval and moderate-intensity continuous training reduce leukocyte TLR4 in inactive adults at elevated risk of type 2 diabetes. Journal of Applied Physiology, 119(5), 508–516. https://doi.org/10.1152/japplphysiol.00334.2015
Rohmansyah, N. A., Praja, R. K., Phanpheng, Y., & Hiruntrakul, A. (2023). High-Intensity Interval Training Versus Moderate-Intensity Continuous Training for Improving Physical Health in Elderly Women. Inquiry, 60, 1–13. https://doi.org/10.1177/00469580231172870
Ruslan, S., Ilias, N. F., Azidin, R. M. F. R., Omar, M., Ghani, R. A., & Ismail, H. (2022). Effect of high intensity interval training and moderate intensity continuous training on blood pressure and blood glucose among T2DM patients. Journal of Physical Education and Sport, 22(10), 2334–2339. https://doi.org/10.7752/jpes.2022.10297
Saberi, S., Askaripour, M., Khaksari, M., Amin Rajizadeh, M., Abbas Bejeshk, M., Akhbari, M., Jafari, E., & Khoramipour, K. (2024). Exercise training improves diabetic renal injury by reducing fetuin-A, oxidative stress and inflammation in type 2 diabetic rats. Heliyon, 10(6), e27749. https://doi.org/10.1016/j.heliyon.2024.e27749
Schjerve, I. E., Tyldum, G. A., Tjønna, A. E., Stølen, T., Loennechen, J. P., Hansen, H. E. M., Haram, P. M., Heinrich, G., Bye, A., Najjar, S. M., Smith, G. L., Slørdahl, S. A., Kemi, O. J., & Wisløff, U. (2008). Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clinical Science, 115(9), 283–293. https://doi.org/10.1042/CS20070332
Singh, M., Sharma, P. K., Garg, V. K., Mondal, S. C., Singh, A. K., & Kumar, N. (2012). Role of fetuin-A in atherosclerosis associated with diabetic patients. Journal of Pharmacy and Pharmacology, 64(12), 1703–1708. https://doi.org/10.1111/j.2042-7158.2012.01561.x
Syamsudin, F., Qurnianingsih, E., Kinanti, R. G., Vigriawan, G. E., Putri, E. A. C., Rif’at Fawaid As’ad, M., Callixte, C., & Herawati, L. (2023). Short Term HIIT increase VO2max, but can’t decrease Free Fatty Acids in Women Sedentary Lifestyle. Retos, 50, 380–386. https://doi.org/10.47197/retos.v50.99573
Tjønna, A. E., Lee, S. J., Rognmo, Ø., Stølen, T. O., Bye, A., Haram, P. M., Loennechen, J. P., Al-Share, Q. Y., Skogvoll, E., Slørdahl, S. A., Kemi, O. J., Najjar, S. M., & Wisløff, U. (2008). Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation, 118(4), 346–354. https://doi.org/10.1161/CIRCULATIONAHA.108.772822
Vigriawan, G. E., Putri, E. A. C., Rejeki, P. S., Qurnianingsih, E., Kinanti, R. G., Mohamed, M. N. A., & Herawati, L. (2022). High-intensity interval training improves physical performance without C-reactive protein (CRP) level alteration in overweight sedentary women. Journal of Physical Education and Sport, 22(2), 442–447. https://doi.org/10.7752/jpes.2022.02055
Wewege, M., Berg, R. Van Den, Ward, R. E., & Keech, A. (2017). The effects of high-intensity interval training vs . moderate-intensity continuous training on body composition in overweight and obese adults : a systematic review and meta-analysis. Obesity Reviews, 18(June), 635–646. https://doi.org/10.1111/obr.12532
Wharton, S., Lau, D. C. W., Vallis, M., Sharma, A. M., Biertho, L., Campbell-Scherer, D., Adamo, K., Alberga, A., Bell, R., Boulé, N., Boyling, E., Brown, J., Calam, B., Clarke, C., Crowshoe, L., Divalentino, D., Forhan, M., Freedhoff, Y., Gagner, M., … Wicklum, S. (2020). Obesity in adults: A clinical practice guideline. Canadian Medical Association Journal, 192(31), E875–E891. https://doi.org/10.1503/cmaj.191707
Widianingsih, W., Salamah, N., & Maulida, F. Q. (2009). The effects of ethanolic extract of green algae (ulva lactuca l.) on blood cholesterol levels in male rats induced by a high fat diet. Jurnal Kedokteran Dan Kesehatan Indonesia, 7(5), 181–186. https://doi.org/10.20885/jkki.vol7.iss5.art3
World Health Organization. (2022). Obesity in the WHO Region. https://cdn.who.int/media/docs/librariesprovider2/euro-health-topics/food-safety/europeanobesityreport-2022-fs-(1).pdf?sfvrsn=fcf36c2c_5&download=true
Yang, Z., Mi, J., Wang, Y., Xue, L., Liu, J., Fan, M., Zhang, D., Wang, L., Qian, H., & Li, Y. (2021). Effects of low-carbohydrate diet and ketogenic diet on glucose and lipid metabolism in type 2 diabetic mice. Nutrition, 89, 111230. https://doi.org/10.1016/j.nut.2021.111230
Zanetti, M. M., Lima e Silva, L. de, Sena, M. A. de B., Neves, E. B., Ferreira, P. F., Keese, F., Nunes, R. A. M., & Fortes, M. D. S. R. (2022). Correlation between anthropometric parameters and cardiometabolic risk in military (Correlación entre parámetros antropométricos y riesgo cadiometabólico en militares). Retos, 44, 1099–1103. https://doi.org/10.47197/retos.v44i0.91559
Zhang, S. F., Zhang, Y., Li, B., & Chen, N. (2018). Physical inactivity induces the atrophy of skeletal muscle of rats through activating AMPK/FoxO3 signal pathway. European Review for Medical and Pharmacological Sciences, 22(1), 199–209. https://doi.org/10.26355/eurrev-201801-14118
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Retos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.