Influence of age and sex on grip strength levels applying a protocol with different elbow angles

Authors

  • Karina Pitombeira Pereira Pedro Universidad de Vigo
  • Iris Machado de Oliveira
  • José María Cancela Carral

DOI:

https://doi.org/10.47197/retos.v47.91585

Keywords:

Handgrip, Jamar dynamometer, exercise test, physical fitness, muscular fitness

Abstract

 There are various protocols for conducting hand grip strength assessment, but there is different opinions and evidence on the best elbow posture to develop the test. Additionally, the possible variability in the biomechanical mechanism involved in the generation of force when comparing an adult and other age groups such as young adolescents and the elderly is an aspect to consider. Objective: To evaluate handgrip strength in two elbow positions, with elbow extension and 90 ° flexion, in men and women of two age groups, young adolescents and older adults, and to analyze whether these different conditions influenced the handgrip strength results obtained. Methods: 119 adolescents and 121 older adults, executed each handgrip strength testing protocol three times with the dominant hand and the highest reading was recorded. After that, anthropometric (Weight, Height, BMI) and demographic data have been collected. Results: In both age group, adolescents and older adults, presented a significant greater handgrip strength in both sex in the collection protocol performed with full elbow extension. A statistic difference also was found in the level of strength, between women and men, for adolescents and older adults. Conclusions: We conclude that the evaluation protocol with the elbow extended was significant better manual grip values in both age groups and in both sexes. The protocol used for the evaluation of grip strength is influenced by the age and sex of the participants.

Key words. Handgrip; Jamar dynamometer; Exercise test; Physical fitness; Muscular fitness.

References

Balogun, J., Akomolafe, C., & Amusa, L. (1991). Grip Strength: Effects of Testing Posture and Elbow Position. Archives of Physical Medicine and Rehabilitation, 72, 280–283.

Bohannon R. W. (2019). Grip Strength: An Indispensable Biomarker For Older Adults. Clinical interventions in aging, 14, 1681–1691. https://doi.org/10.2147/CIA.S194543

Burdukiewicz, A., Pietraszewska, J., Andrzejewska, J., Chromik, K., & Stachó, A. (2020). Asymmetry of Musculature and Hand Grip Strength in Bodybuilders and Martial Artists. International Journal of Environmental Research and Public Health, 17, 1–11. https://doi.org/10.3390/ijerph17134695

Desrosiers, J., Bravo, G., Hébert, R., & Mercier, L. (1995). Impact of Elbow Position on Grip Strength of Elderly Men. Journal of Hand Therapy, 8(1), 27–30. https://doi.org/10.1016/S0894-1130(12)80153-0

España-Romero, V., Ortega, F. B., Vicente-Rodríguez, G., Artero, E. G., Rey, J. P., & Ruiz, J. R. (2010). Elbow Position Affects Handgrip Strength in Adolescents: Validity and Reliability of Jamar, DynEx, and TKK Dynamometers. Journal of Strength and Conditioning Research, 24(1), 272–277. https://doi.org/10.1519/JSC.0b013e3181b296a5

Frederiksen, H., Hjelmborg, J., Mortensen, J., Mcgue, M., Vaupel, J., & Christensen, K. (2006). Age Trajectories of Grip Strength: Cross-Sectional and Longitudinal Data Among 8,342 Danes Aged 46 to 102. Annals of Epidemiology, 16(7), 554–562. https://doi.org/10.1016/j.annepidem.2005.10.006

Godoy, J., Barros, J., Moreira, D., & Silva Jr., W. (2004). Força de aperto da preensão palmar com o uso do dinamômetro Jamar: revisão de literatura. EFDeportes.Com Revista Digital, 10(79).

Hillman, T., Nunes, Q., Hornby, S., Stanga, Z., Neal, K., Rowlands, B., Allison, S., & Lobo, D. (2005). A practical pos-ture for hand grip dynamometry in the clinical setting. Clinical Nutrition, 24(2), 224–228. https://doi.org/10.1016/j.clnu.2004.09.013

Hershkovitz, A., Yichayaou, B., Ronen, A., Maydan, G., Kornyukov, N., Burstin, A., & Brill, S. (2019). The association between hand grip strength and rehabilitation outcome in post-acute hip fractured patients. Aging clinical and experimental research, 31(10), 1509-1516.

Hogrel, J. Y. (2015). Grip strength measured by high precision dynamometry in healthy subjects from 5 to 80 years. BMC Musculoskeletal Disorders, 16(1). https://doi.org/10.1186/s12891-015-0612-4

Hornby, S. T., Nunes, Q. M., Hillman, T. E., Stanga, Z., Neal, K. R., Rowlands, B. J., Allison, S. P., & Lobo, D. N. (2005). Relationships between structural and functional measures of nutritional status in a normally nourished popula-tion. Clinical Nutrition, 24(3), 421–426. https://doi.org/10.1016/j.clnu.2005.01.002

Innes, E. (1999). Handgrip strength testing: A review of the literature. Australian Occupational Therapy Journal, 46(3), 120–140. https://doi.org/10.1046/j.1440-1630.1999.00182.x

Kuzala, E. A., & Vargo, M. C. (1992). The Relationship Between Elbow Position and Grip Strength. The American Journal of Occupational Therapy, 46(6), 509–512. https://doi.org/10.5014/ajot.46.6.509

MacDermid, J., Solomon, G., Valdes, K., & American Society of Hand Therapists. (2015). Clinical assessment recommenda-tions (J. MacDermid, G. Solomon, & K. Valdes, Eds.; 3rd ed.). American Society of Hand Therapists.

Mathiowetz, V., Rennells, C., & Donahoe, L. (1985). Effect of elbow position on grip and key pinch strength. The Journal of Hand Surgery, 10(5), 694–697. https://doi.org/10.1016/S0363-5023(85)80210-0

Oxford, K. L. (2000). Elbow Positioning for Maximum Grip Performance. Journal of Hand Therapy, 13(1), 33–36. https://doi.org/10.1016/S0894-1130(00)80050-2

Savva, C., Karagiannis, C., & Rushton, A. (2013). Test–retest reliability of grip strength measurement in full elbow exten-sion to evaluate maximum grip strength. Journal of Hand Surgery (European Volume), 38(2), 183–186. https://doi.org/10.1177/1753193412449804

Stock, R., Thrane, G., Askim, T., Anke, A., & Mork, P. J. (2019). Development of grip strength during the first year after stroke.

Vianna, L. C., Oliveira, R. B., & Araújo, C. G. S. (2007). Age-Related Decline in Handgrip Strength Differs According to Gender. The Journal of Strength and Conditioning Research, 21(4), 1310. https://doi.org/10.1519/R-23156.1

Watanabe, T., Owashi, K., Kanauchi, Y., Mura, N., Takahara, M., & Ogino, T. (2005). The Short-Term Reliability of Grip Strength Measurement and the Effects of Posture and Grip Span. The Journal of Hand Surgery, 30(3), 603–609. https://doi.org/10.1016/j.jhsa.2004.12.007

Werle, S., Goldhahn, J., Drerup, S., Simmen, B., Sprott, H., & Herren, D. (2009). Age- and Gender-Specific Normative Data of Grip and Pinch Strength in a Healthy Adult Swiss Population. Journal of Hand Surgery (European Volume), 34(1), 76–84. https://doi.org/10.1177/1753193408096763

Xu, Z., Gao, D., Xu, K., Zhou, Z., & Guo, Y. (2021). The Effect of Posture on Maximum Grip Strength Measurements. Journal of Clinical Densitometry, 24(4), 638–644. https://doi.org/10.1016/j.jocd.2021.01.005

Published

2023-01-02

How to Cite

Pitombeira Pereira Pedro, K., Machado de Oliveira, I. ., & Cancela Carral, J. M. . (2023). Influence of age and sex on grip strength levels applying a protocol with different elbow angles. Retos, 47, 853–858. https://doi.org/10.47197/retos.v47.91585

Issue

Section

Original Research Article

Most read articles by the same author(s)

1 2 > >>