El ejercicio de intensidad moderada tiene el efecto más beneficioso sobre la respuesta inflamatoria en ratones inducidos por fructosa (Mus musculus) (Moderate-Intensity exercise has most beneficial effect on inflammatory response in fructose-induced mice (Mus musculus))

Autores/as

  • Nabilah Izzatunnisa Medical Program, Faculty of Medicine, Universitas Airlangga
  • Faiq Amirul Hakim Medical Program, Faculty of Medicine, Universitas Airlangga
  • Wildan Maulana Ishom Putra Medical Program, Faculty of Medicine, Universitas Airlangga
  • Purwo Sri Rejeki Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga https://orcid.org/0000-0002-6285-4058
  • Lilik Herawati Physiology Division, Department of Medical Physiology and Biochemistry, Faculty of Medicine, Universitas Airlangga
  • Hermina Novida Division of Endocrinology, Diabetes and Metabolism, Airlangga University, Dr Soetomo General Hospital
  • Shariff Halim Faculty of Health Sciences, University Technology MARA (UiTM) Pulau Pinang https://orcid.org/0000-0003-3792-9879
  • Adi Pranoto Department of Sport Coaching Education, Faculty of Sport and Health Science, Universitas Negeri Surabaya https://orcid.org/0000-0003-4080-9245

DOI:

https://doi.org/10.47197/retos.v60.107772

Palabras clave:

Anti-inflammatory, obesity, pro-inflammatory, swimming exercise

Resumen

Los carbohidratos son la fuente de energía más importante para la mayoría de la población. Sin embargo, el consumo de altos niveles de carbohidratos, especialmente de fuentes procesadas, se asocia con una mayor incidencia de obesidad. La obesidad hace que los niveles de adiponectina disminuyan, lo que tiene implicaciones en la activación de vías de señalización inflamatorias, aumentando la inflamación crónica y el riesgo de desarrollar células cancerosas. Se informa que el ejercicio es una alternativa que puede utilizarse para mantener un ambiente antiinflamatorio. Sin embargo, no se ha explorado claramente el efecto de la intensidad del ejercicio sobre la reducción de los niveles de TNF-α y el aumento de la adiponectina. Por tanto, este estudio tiene como objetivo demostrar el efecto de varios tipos de ejercicio sobre los cambios en la respuesta inflamatoria en ratones inducida por fructosa (Mus musculus). Este estudio es un verdadero estudio experimental con un diseño de posprueba de grupo de control aleatorio utilizando 28 ratones macho (Mus musculus), de ocho semanas de edad, con un peso corporal de 20 ± 5 gramos y divididos aleatoriamente en cuatro grupos: grupo de control (CTR), grupo bajo. -ejercicio de intensidad (LIE), ejercicio de intensidad moderada (MIE) y ejercicio de alta intensidad (HIE). Los ratones fueron inducidos por vía oral con una solución de fructosa al 20% a una dosis de 1,86 gramos/kg de peso corporal desde el día 1 hasta el día 60. El entrenamiento de natación se llevó a cabo con una frecuencia de 3 veces por semana durante 8 semanas. Se tomaron muestras de sangre 24 horas después del último ejercicio, mientras que los niveles de adiponectina y TNF-α se midieron mediante el método ELISA. Técnicas de análisis de datos mediante ANOVA unidireccional y prueba post-hoc HSD de Tukey. Resultados del análisis de niveles de TNF-α en CTR, LIE, MIE y HIE (103,43 ± 42,21 vs 93,82 ± 60,87 vs 34,52 ± 15,35 vs 68,14 ± 26,14 ng/mL y p = 0,004). Adiponectina en CTR, LIE, MIE y HIE (27,39±7,48 vs 66,74±7,81 vs 235,13±47,94 vs 147,92±19,46 pg/mL y p=0,000). La intervención de ejercicio con tres tipos diferentes de intensidad durante 8 semanas aumentó los niveles de adiponectina, mientras que los niveles de TNF-α solo disminuyeron en el grupo de ejercicio de intensidad moderada.

Palabras clave: Antiinflamatorio, obesidad, proinflamatorio, ejercicio de natación

Abstract. Carbohydrates are the most important source of energy for most of the population. However, consuming high levels of carbohydrates, especially from processed sources, is associated with an increased incidence of obesity. Obesity causes adiponectin levels to decrease, which has implications for the activation of inflammatory signaling pathways, increasing chronic inflammation and the risk of developing cancer cells. Exercise is reported to be an alternative that can be used to maintain an anti-inflammatory environment. However, the effect of exercise intensity on reducing TNF-α levels and increasing adiponectin has not been clearly explored. Therefore, this study aims to prove the effect of various types of exercise on changes in the inflammatory response in mice induced by fructose (Mus musculus). This study is a true experimental study with a randomized control group posttest-only design using 28 male mice (Mus musculus), eight weeks old, with body weight 20 ± 5 grams and randomly divided into four groups: control group (CTR), low-intensity exercise (LIE), moderate-intensity exercise (MIE), and high-intensity exercise (HIE). Mice were induced orally with a 20% fructose solution at a dose of 1.86 grams/kg body weight from day 1 to day 60. Swimming training is carried out with a frequency of 3x/week for 8 weeks. Blood samples were taken 24 hours after the last exercise, while adiponectin and TNF-α levels were measured using the ELISA method. Data analysis techniques using one-way ANOVA and Tukey's HSD post-hoc test. Results of analysis of TNF-α levels in CTR, LIE, MIE, and HIE (103.43 ± 42.21 vs 93.82 ± 60.87 vs 34.52 ± 15.35 vs 68.14 ± 26.14 ng/mL and p = 0.004). Adiponectin in CTR, LIE, MIE, and HIE (27.39±7.48 vs 66.74±7.81 vs 235.13±47.94 vs 147.92±19.46 pg/mL and p=0.000). Exercise intervention with three different types of intensity for 8 weeks increased adiponectin levels, while TNF-α levels were only found to decrease in the moderate-intensity exercise group.

Keywords: Anti-inflammatory, obesity, pro-inflammatory, swimming exercise

Citas

Achari, A. E., & Jain, S. K. (2017). Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. International journal of molecular sciences, 18(6), 1321. https://doi.org/10.3390/ijms18061321.

Alam, Y. H., Kim, R., & Jang, C. (2022). Metabolism and Health Impacts of Dietary Sugars. Journal of Lipid and Atherosclerosis, 11(1), 20–38. https://doi.org/10.12997/jla.2022.11.1.20.

Basciano, H., Federico, L., & Adeli, K. (2005). Fructose, insulin resistance, and metabolic dyslipidemia. Nutrition & metabolism, 2(1), 5. https://doi.org/10.1186/1743-7075-2-5.

Bashashati, M., Moradi, M., & Sarosiek, I. (2017). Interleukin-6 in irritable bowel syndrome: A systematic review and meta-analysis of IL-6 (-G174C) and circulating IL-6 levels. Cytokine, 99, 132–138. https://doi.org/10.1016/j.cyto.2017.08.017.

Bashiri, H., Enayati, M., Bashiri, A., & Salari, A. A. (2020). Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiology & behavior, 223, 113003. https://doi.org/10.1016/j.physbeh.2020.113003.

Bouassida, A., Chamari, K., Zaouali, M., Feki, Y., Zbidi, A., & Tabka, Z. (2010). Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. British journal of sports medicine, 44(9), 620–630. https://doi.org/10.1136/bjsm.2008.046151.

Clemente-Suárez, V. J., Mielgo-Ayuso, J., Martín-Rodríguez, A., Ramos-Campo, D. J., Redondo-Flórez, L., & Tornero-Aguilera, J. F. (2022). The Burden of Carbohydrates in Health and Disease. Nutrients, 14(18), 3809. https://doi.org/10.3390/nu14183809.

Conraads, V. M., Beckers, P., Bosmans, J., De Clerck, L. S., Stevens, W. J., Vrints, C. J., & Brutsaert, D. L. (2002). Combined endurance/resistance training reduces plasma TNF-alpha receptor levels in patients with chronic heart failure and coronary artery disease. European heart journal, 23(23), 1854–1860. https://doi.org/10.1053/euhj.2002.3239.

Cust, A. E., Slimani, N., Kaaks, R., van Bakel, M., Biessy, C., Ferrari, P., Laville, M., Tjønneland, A., Olsen, A., Overvad, K., Lajous, M., Clavel-Chapelon, F., Boutron-Ruault, M. C., Linseisen, J., Rohrmann, S., Nöthlings, U., Boeing, H., Palli, D., Sieri, S., Panico, S., … Riboli, E. (2007). Dietary carbohydrates, glycemic index, glycemic load, and endometrial cancer risk within the European Prospective Investigation into Cancer and Nutrition cohort. American journal of epidemiology, 166(8), 912–923. https://doi.org/10.1093/aje/kwm161.

da Costa Daniele, T. M., de Bruin, P. F. C., de Matos, R. S., de Bruin, G. S., Maia Chaves, C., Junior, & de Bruin, V. M. S. (2020). Exercise effects on brain and behavior in healthy mice, Alzheimer's disease and Parkinson's disease model-A systematic review and meta-analysis. Behavioural brain research, 383, 112488. https://doi.org/10.1016/j.bbr.2020.112488.

De Lorenzo, A., Soldati, L., Sarlo, F., Calvani, M., Di Lorenzo, N., & Di Renzo, L. (2016). New obesity classification criteria as a tool for bariatric surgery indication. World journal of gastroenterology, 22(2), 681–703. https://doi.org/10.3748/wjg.v22.i2.681.

De Souza, L., Barros, W. M., De Souza, R. M., Delanogare, E., Machado, A. E., Braga, S. P., Rosa, G. K., Nardi, G. M., Rafacho, A., Speretta, G. F. F., & Moreira, E. L. G. (2021). Impact of different fructose concentrations on metabolic and behavioral parameters of male and female mice. Physiology & behavior, 228, 113187. https://doi.org/10.1016/j.physbeh.2020.113187.

DiNicolantonio, J. J., O'Keefe, J. H., & Lucan, S. C. (2015). Added fructose: a principal driver of type 2 diabetes mellitus and its consequences. Mayo Clinic proceedings, 90(3), 372–381. https://doi.org/10.1016/j.mayocp.2014.12.019.

Drake, I., Sonestedt, E., Gullberg, B., Ahlgren, G., Bjartell, A., Wallström, P., & Wirfält, E. (2012). Dietary intakes of carbohydrates in relation to prostate cancer risk: a prospective study in the Malmö Diet and Cancer cohort. The American journal of clinical nutrition, 96(6), 1409–1418. https://doi.org/10.3945/ajcn.112.039438.

Fasshauer, M., Klein, J., Neumann, S., Eszlinger, M., & Paschke, R. (2002). Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochemical and biophysical research communications, 290(3), 1084–1089. https://doi.org/10.1006/bbrc.2001.6307.

Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature medicine, 25(12), 1822–1832. https://doi.org/10.1038/s41591-019-0675-0.

Gonzalez-Gil, A. M., & Elizondo-Montemayor, L. (2020). The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients, 12(6), 1899. https://doi.org/10.3390/nu12061899.

Guo, S., Huang, Y., Zhang, Y., Huang, H., Hong, S., & Liu, T. (2020). Impacts of exercise interventions on different diseases and organ functions in mice. Journal of sport and health science, 9(1), 53–73. https://doi.org/10.1016/j.jshs.2019.07.004.

Hall, K. D., Farooqi, I. S., Friedman, J. M., Klein, S., Loos, R. J. F., Mangelsdorf, D. J., O'Rahilly, S., Ravussin, E., Redman, L. M., Ryan, D. H., Speakman, J. R., & Tobias, D. K. (2022). The energy balance model of obesity: beyond calories in, calories out. The American journal of clinical nutrition, 115(5), 1243–1254. https://doi.org/10.1093/ajcn/nqac031.

Hayashino, Y., Jackson, J. L., Hirata, T., Fukumori, N., Nakamura, F., Fukuhara, S., Tsujii, S., & Ishii, H. (2014). Effects of exercise on C-reactive protein, inflammatory cytokine and adipokine in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Metabolism: clinical and experimental, 63(3), 431–440. https://doi.org/10.1016/j.metabol.2013.08.018.

Heikkilä, K., Ebrahim, S., & Lawlor, D. A. (2008). Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. European journal of cancer (Oxford, England : 1990), 44(7), 937–945. https://doi.org/10.1016/j.ejca.2008.02.047.

Herman, M. A., & Birnbaum, M. J. (2021). Molecular aspects of fructose metabolism and metabolic disease. Cell metabolism, 33(12), 2329–2354. https://doi.org/10.1016/j.cmet.2021.09.010.

Hosogai, N., Fukuhara, A., Oshima, K., Miyata, Y., Tanaka, S., Segawa, K., Furukawa, S., Tochino, Y., Komuro, R., Matsuda, M., & Shimomura, I. (2007). Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes, 56(4), 901–911. https://doi.org/10.2337/db06-0911.

Jackson, J. L., Judd, S. E., Panwar, B., Howard, V. J., Wadley, V. G., Jenny, N. S., & Gutiérrez, O. M. (2016). Associations of 25-hydroxyvitamin D with markers of inflammation, insulin resistance and obesity in black and white community-dwelling adults. Journal of clinical & translational endocrinology, 5, 21–25. https://doi.org/10.1016/j.jcte.2016.06.002.

Jahromi, A. S., Zar, A., Ahmadi, F., Krustrup, P., Ebrahim, K., Hovanloo, F., & Amani, D. (2014). Effects of Endurance Training on the Serum Levels of Tumour Necrosis Factor-α and Interferon-γ in Sedentary Men. Immune network, 14(5), 255–259. https://doi.org/10.4110/in.2014.14.5.255.

Jebb S. A. (2015). Carbohydrates and obesity: from evidence to policy in the UK. The Proceedings of the Nutrition Society, 74(3), 215–220. https://doi.org/10.1017/S0029665114001645.

Jin, X., Qiu, T., Li, L., Yu, R., Chen, X., Li, C., Proud, C. G., & Jiang, T. (2023). Pathophysiology of obesity and its associated diseases. Acta pharmaceutica Sinica. B, 13(6), 2403–2424. https://doi.org/10.1016/j.apsb.2023.01.012.

Kanuri, G., Spruss, A., Wagnerberger, S., Bischoff, S. C., & Bergheim, I. (2011). Fructose-induced steatosis in mice: role of plasminogen activator inhibitor-1, microsomal triglyceride transfer protein and NKT cells. Laboratory investigation; a journal of technical methods and pathology, 91(6), 885–895. https://doi.org/10.1038/labinvest.2011.44.

Lee, S. H., Park, S. Y., & Choi, C. S. (2022). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & metabolism journal, 46(1), 15–37. https://doi.org/10.4093/dmj.2021.0280.

Li, C., Li, J., Xiong, X., Liu, Y., Lv, Y., Qin, S., Liu, D., Wei, R., Ruan, X., Zhang, J., Xu, L., Wang, X., Chen, J., Zhang, Y., & Zheng, L. (2018). TRPM8 activation improves energy expenditure in skeletal muscle and exercise endurance in mice. Gene, 641, 111–116. https://doi.org/10.1016/j.gene.2017.10.045.

Liu, Z., Liu, H. Y., Zhou, H., Zhan, Q., Lai, W., Zeng, Q., Ren, H., & Xu, D. (2017). Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice. Frontiers in microbiology, 8, 1687. https://doi.org/10.3389/fmicb.2017.01687.

Ludtke, D. D., Siteneski, A., Galassi, T. O., Buffon, A. C., Cidral-Filho, F. J., Reed, W. R., Salgado, A. S. I., Dos Santos, A. R. S., & Martins, D. F. (2020). High-intensity swimming exercise reduces inflammatory pain in mice by activation of the endocannabinoid system. Scandinavian journal of medicine & science in sports, 30(8), 1369–1378. https://doi.org/10.1111/sms.13705.

Ma, X., Nan, F., Liang, H., Shu, P., Fan, X., Song, X., Hou, Y., & Zhang, D. (2022). Excessive intake of sugar: An accomplice of inflammation. Frontiers in immunology, 13, 988481. https://doi.org/10.3389/fimmu.2022.988481.

Makarem, N., Scott, M., Quatromoni, P., Jacques, P., & Parekh, N. (2014). Trends in dietary carbohydrate consumption from 1991 to 2008 in the Framingham Heart Study Offspring Cohort. The British journal of nutrition, 111(11), 2010–2023. https://doi.org/10.1017/S0007114513004443.

Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P., Willett, W. C., & Hu, F. B. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes care, 33(11), 2477–2483. https://doi.org/10.2337/dc10-1079.

Malik, V. S., Schulze, M. B., & Hu, F. B. (2006). Intake of sugar-sweetened beverages and weight gain: a systematic review. The American journal of clinical nutrition, 84(2), 274–288. https://doi.org/10.1093/ajcn/84.1.274.

McKie, G. L., Medak, K. D., Knuth, C. M., Shamshoum, H., Townsend, L. K., Peppler, W. T., & Wright, D. C. (2019). Housing temperature affects the acute and chronic metabolic adaptations to exercise in mice. The Journal of physiology, 597(17), 4581–4600. https://doi.org/10.1113/JP278221.

Odegaard, J. I., & Chawla, A. (2013). Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science (New York, N.Y.), 339(6116), 172–177. https://doi.org/10.1126/science.1230721.

Ohyama, K., Nogusa, Y., Suzuki, K., Shinoda, K., Kajimura, S., & Bannai, M. (2015). A combination of exercise and capsinoid supplementation additively suppresses diet-induced obesity by increasing energy expenditure in mice. American journal of physiology. Endocrinology and metabolism, 308(4), E315–E323. https://doi.org/10.1152/ajpendo.00354.2014.

Ouchi, N., Parker, J. L., Lugus, J. J., & Walsh, K. (2011). Adipokines in inflammation and metabolic disease. Nature reviews. Immunology, 11(2), 85–97. https://doi.org/10.1038/nri2921.

Pereira, R. M., Botezelli, J. D., da Cruz Rodrigues, K. C., Mekary, R. A., Cintra, D. E., Pauli, J. R., da Silva, A. S. R., Ropelle, E. R., & de Moura, L. P. (2017). Fructose Consumption in the Development of Obesity and the Effects of Different Protocols of Physical Exercise on the Hepatic Metabolism. Nutrients, 9(4), 405. https://doi.org/10.3390/nu9040405.

Pranoto, A., Cahyono, M. B. A., Yakobus, R., Izzatunnisa, N., Ramadhan, R. N., Rejeki, P. S., Miftahussurur, M., Effendi, W. I., Wungu, C. D. K., & Yamaoka, Y. (2023a). Long-Term Resistance-Endurance Combined Training Reduces Pro-Inflammatory Cytokines in Young Adult Females with Obesity. Sports (Basel, Switzerland), 11(3), 54. https://doi.org/10.3390/sports11030054.

Pranoto, A., Rejeki, P. S., Miftahussurur, M., Setiawan, H. K., Yosika, G. F., Munir, M., Maesaroh, S., Purwoto, S. P., Waritsu, C., & Yamaoka, Y. (2023b). Single 30 min treadmill exercise session suppresses the production of pro-inflammatory cytokines and oxidative stress in obese female adolescents. Journal of basic and clinical physiology and pharmacology, 34(2), 235–242. https://doi.org/10.1515/jbcpp-2022-0196.

Prasetya, R. E., Umijati, S., & Rejeki, P. (2018). Effect of Moderate Intensity Exercise on Body Weight and Blood Estrogen Level Ovariectomized Mice. Majalah Kedokteran Bandung, 50(3), 147–151. https://doi.org/10.15395/mkb.v50n3.1368.

Racil, G., Ben Ounis, O., Hammouda, O., Kallel, A., Zouhal, H., Chamari, K., & Amri, M. (2013). Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. European journal of applied physiology, 113(10), 2531–2540. https://doi.org/10.1007/s00421-013-2689-5.

Raun, S. H., Henriquez-Olguín, C., Karavaeva, I., Ali, M., Møller, L. L. V., Kot, W., Castro-Mejía, J. L., Nielsen, D. S., Gerhart-Hines, Z., Richter, E. A., & Sylow, L. (2020). Housing temperature influences exercise training adaptations in mice. Nature communications, 11(1), 1560. https://doi.org/10.1038/s41467-020-15311-y.

Reilly, S. M., & Saltiel, A. R. (2017). Adapting to obesity with adipose tissue inflammation. Nature reviews. Endocrinology, 13(11), 633–643. https://doi.org/10.1038/nrendo.2017.90.

Rejeki, P. S., Pranoto, A., Rahmanto, I., Izzatunnisa, N., Yosika, G. F., Hernaningsih, Y., Wungu, C. D. K., & Halim, S. (2023). The Positive Effect of Four-Week Combined Aerobic-Resistance Training on Body Composition and Adipokine Levels in Obese Females. Sports (Basel, Switzerland), 11(4), 90. https://doi.org/10.3390/sports11040090.

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., Halim, S., Pranoto, A., & Rejeki, P. S. (2024). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice. Retos, 51, 1194–1209. https://doi.org/10.47197/retos.v51.101189.

Sartorius, K., Sartorius, B., Madiba, T. E., & Stefan, C. (2018). Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. BMJ open, 8(2), e018449. https://doi.org/10.1136/bmjopen-2017-018449.

Schulze, M. B., Manson, J. E., Ludwig, D. S., Colditz, G. A., Stampfer, M. J., Willett, W. C., & Hu, F. B. (2004). Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. JAMA, 292(8), 927–934. https://doi.org/10.1001/jama.292.8.927.

Shi, Y. N., Liu, Y. J., Xie, Z., & Zhang, W. J. (2021). Fructose and metabolic diseases: too much to be good. Chinese medical journal, 134(11), 1276–1285. https://doi.org/10.1097/CM9.0000000000001545.

Singla, P., Bardoloi, A., & Parkash, A. A. (2010). Metabolic effects of obesity: A review. World journal of diabetes, 1(3), 76–88. https://doi.org/10.4239/wjd.v1.i3.76.

Smart, N. A., Larsen, A. I., Le Maitre, J. P., & Ferraz, A. S. (2011). Effect of exercise training on interleukin-6, tumour necrosis factor alpha and functional capacity in heart failure. Cardiology research and practice, 2011, 532620. https://doi.org/10.4061/2011/532620.

Sugama, K., Suzuki, K., Yoshitani, K., Shiraishi, K., & Kometani, T. (2013). Urinary excretion of cytokines versus their plasma levels after endurance exercise. Exercise immunology review, 19, 29–48.

Thorogood, A., Mottillo, S., Shimony, A., Filion, K. B., Joseph, L., Genest, J., Pilote, L., Poirier, P., Schiffrin, E. L., & Eisenberg, M. J. (2011). Isolated aerobic exercise and weight loss: a systematic review and meta-analysis of randomized controlled trials. The American journal of medicine, 124(8), 747–755. https://doi.org/10.1016/j.amjmed.2011.02.037.

Wang, X., Zhu, L., Li, X., Wang, X., Hao, R., & Li, J. (2022). Effects of high fructose corn syrup on intestinal microbiota structure and obesity in mice. NPJ science of food, 6(1), 17. https://doi.org/10.1038/s41538-022-00133-7.

Wolczyk, D., Zaremba-Czogalla, M., Hryniewicz-Jankowska, A., Tabola, R., Grabowski, K., Sikorski, A. F., & Augoff, K. (2016). TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cellular oncology (Dordrecht), 39(4), 353–363. https://doi.org/10.1007/s13402-016-0280-x.

Wondmkun Y. T. (2020). Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes, metabolic syndrome and obesity : targets and therapy, 13, 3611–3616. https://doi.org/10.2147/DMSO.S275898.

Zhao, D., Sun, Y., Tan, Y., Zhang, Z., Hou, Z., Gao, C., Feng, P., Zhang, X., Yi, W., & Gao, F. (2018). Short-Duration Swimming Exercise after Myocardial Infarction Attenuates Cardiac Dysfunction and Regulates Mitochondrial Quality Control in Aged Mice. Oxidative medicine and cellular longevity, 2018, 4079041. https://doi.org/10.1155/2018/4079041.

Descargas

Publicado

2024-11-01

Cómo citar

Izzatunnisa, N., Hakim, F. A., Putra, W. M. I., Rejeki, P. S., Herawati, L., Novida, H., Halim, S., & Pranoto, A. (2024). El ejercicio de intensidad moderada tiene el efecto más beneficioso sobre la respuesta inflamatoria en ratones inducidos por fructosa (Mus musculus) (Moderate-Intensity exercise has most beneficial effect on inflammatory response in fructose-induced mice (Mus musculus)). Retos, 60, 552–560. https://doi.org/10.47197/retos.v60.107772

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a

1 2 3 4 > >>