Conceptos de capacidad y potencia anaeróbica actualización de la terminología. Revisión sistemática
DOI:
https://doi.org/10.47197/retos.v62.108941Palabras clave:
Actividad física anaeróbica, rendimiento atlético, análisis bioenergético, deportesResumen
Introducción: La capacidad y potencia anaeróbica son conceptos clave en la fisiología del ejercicio, especialmente en deportes que requieren esfuerzos explosivos y de alta intensidad. A lo largo de las décadas, la terminología utilizada para describir estos conceptos ha evolucionado conforme avanza el conocimiento científico y las tecnologías de medición, lo que ha permitido una comprensión más precisa de los mecanismos fisiológicos subyacentes y su aplicación en el deporte. Objetivo: Esta revisión sistemática tiene como propósito actualizar la terminología en los conceptos de capacidad y potencia anaeróbica. Métodos: Se realizó una búsqueda exhaustiva en bases de datos científicos utilizando términos relacionados con capacidad y potencia anaeróbica, así como términos asociados. Se incluyen estudios que ofrecen definiciones actualizadas, estudios comparativos y revisiones de críticas sobre el tema. Para la selección de los estudios relevantes y de calidad, se aplican criterios de inclusión y exclusión específicos. Resultados: Se analizaron 15 estudios que examinaron la evolución de la terminología relacionada con la capacidad y potencia anaeróbica. Los resultados muestran una tendencia hacia definiciones más precisas y específicas de estos conceptos, reflejando los avances en la comprensión de los mecanismos fisiológicos subyacentes. Conclusión: Se destacan nuevos términos y enfoques metodológicos surgidos en la literatura reciente, los cuales proporcionan una base sólida para futuras investigaciones y aplicaciones en la práctica deportiva.
Citas
Bangsbo, J. (1998). Cuantificación de la producción de energía anaeróbica durante el ejercicio intenso. Medicina y ciencia en deportes y ejercicio, 30(1), 47-52. https://www.redalyc.org/articulo.oa?id=54222981005
Ab, A., Rhibi, Ouerghi, Ac, H., Saeidi, & Zouhal. (2018). Effects of recovery mode during high intensity interval training on glucoregulatory hormones and glucose metabolism in response to maximal exercise. Journal of athletic enhance-ment, 07(03). https://doi.org/10.4172/2324-9080.1000292
Abdollahi Diba, M., Sari Sarraf, V., Amirsasan, R., & Dabbagh Nikoukheslat, S. (2024). Effect of a 12-week high-calorie-expenditure multimodal exercise program on health indices in women with overweight: Protocol for a randomized con-trolled trial. JMIR Research Protocols, 13, e51599. https://doi.org/10.2196/51599
Bakermans, A. J., Wessel, C. H., Zheng, K. H., Groot, P. F. C., Stroes, E. S. G., & Nederveen, A. J. (2020). Dynamic magnetic resonance measurements of calf muscle oxygenation and energy metabolism in peripheral artery dis-ease. Journal of Magnetic Resonance Imaging, 51(1), 98–107. https://doi.org/10.1002/jmri.26841
Balaban, R. S. (1990a). Regulation of oxidative phosphorylation in the mammalian cell. American Journal of Physiology. Cell Physiology, 258(3), C377–C389. https://doi.org/10.1152/ajpcell.1990.258.3.c377
Balaban, R. S. (1990b). Regulation of oxidative phosphorylation in the mammalian cell. American Journal of Physiology. Cell Physiology, 258(3), C377–C389. https://doi.org/10.1152/ajpcell.1990.258.3.c377
Bangsbo, J. (1996). Oxygen deficit: A measure of the anaerobic energy production during intense exercise? Canadian Journal of Applied Physiology, 21(5), 350–363. https://doi.org/10.1139/h96-031
Bangsbo, J. (1998). Quantification of anaerobic energy production during intense exercise. Medicine and Science in Sports and Exercise, 30(1), 47–52. https://doi.org/10.1097/00005768-199801000-00007
Bartel, C., Coswig, V. S., Protzen, G. V., & Del Vecchio, F. B. (2022a). Energy demands in high-intensity intermittent taekwondo specific exercises. PeerJ, 10(e13654), e13654. https://doi.org/10.7717/peerj.13654
Bartel, C., Coswig, V. S., Protzen, G. V., & Del Vecchio, F. B. (2022b). Energy demands in high-intensity intermittent taekwondo specific exercises. PeerJ, 10(e13654), e13654. https://doi.org/10.7717/peerj.13654
Beinert, H., Boyer, P. D., Lardy, H., & Myrbäck, K. (1963). The oxygen, chapter 17. 17, 447–476.
Bendahan, D., Chatel, B., & Jue, T. (2017). Comparative NMR and NIRS analysis of oxygen-dependent metabolism in exer-cising finger flexor muscles. American Journal of Physiology. Regulatory, Integrative and Comparative Physiolo-gy, 313(6), R740–R753. https://doi.org/10.1152/ajpregu.00203.2017
Beneke, Pollmann, Bleif, Leithäuser, & Hütler. (2002). How anaerobic is the Wingate Anaerobic Test for humans? European journal of applied physiology, 87(4–5), 388–392. https://doi.org/10.1007/s00421-002-0622-4
Beneke, R., Hütler, M., & Leithäuser, R. M. (2007). Rendimiento anaeróbico y metabolismo en niños y adolescentes varo-nes. Revista europea de fisiología aplicada, 101.
Benz, R., Kottke, M., & Brdiczka, D. (1990a). The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochimica et Biophysica Acta. Biomem-branes, 1022(3), 311–318. https://doi.org/10.1016/0005-2736(90)90279-w
Benz, R., Kottke, M., & Brdiczka, D. (1990b). The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochimica et Biophysica Acta. Biomem-branes, 1022(3), 311–318. https://doi.org/10.1016/0005-2736(90)90279-w
Bertuzzi, R. C. de M., Franchini, E., Kokubun, E., & Kiss, M. A. P. D. M. (2007). Energy system contributions in indoor rock climbing. European Journal of Applied Physiology, 101(3), 293–300. https://doi.org/10.1007/s00421-007-0501-0
Bessman, S. P. (1972). Teoría de la acción de la insulina basada en el aceptor de la hexoquinasa. Nueva evidencia. Isr J Med Sci, 8(3), 344–352.
Bessman, S. P., & Geiger, P. J. (1981). Transporte de energía en el músculo: la lanzadera de fosforilcreati-na. Science, 211(4481), 448–452.
Billaut, F., Giacomoni, M., & Falgairette, G. (2003). Maximal intermittent cycling exercise: effects of recovery duration and gender. Journal of Applied Physiology (Bethesda, Md.: 1985), 95(4), 1632–1637. https://doi.org/10.1152/japplphysiol.00983.2002
Bogdanis, G. C., Nevill, M. E., Boobis, L. H., & Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic me-tabolism to energy supply during repeated sprint exercise. Journal of Applied Physiology (Bethesda, Md.: 1985), 80(3), 876–884. https://doi.org/10.1152/jappl.1996.80.3.876
Bogdanis, G. C., Nevill, M. E., Lakomy, H. K. A., & Boobis, L. H. (1998). Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiologica Scandinavica, 163(3), 261–272. https://doi.org/10.1046/j.1365-201x.1998.00378.x
Bogdanis, G., Nevill, M., & Lakomy, H. (1994). Efectos del ejercicio dinámico previo con los brazos en la potencia de salida durante el ciclismo de velocidad máxima repetida. Revista de ciencias del deporte, 12.
Borg, T. K., & Caulfield, J. B. (1980). Morphology of connective tissue in skeletal muscle. Tissue & Cell, 12(1), 197–207. https://doi.org/10.1016/0040-8166(80)90061-0
Brooks, G. A. (2009). Cell–cell and intracellular lactate shuttles. The Journal of Physiology, 587(23), 5591–5600. https://doi.org/10.1113/jphysiol.2009.178350
Brooks, G. A. (2012). Bioenergetics of exercising humans. En Comprehensive Physiology (pp. 537–562). Wiley. https://doi.org/10.1002/cphy.c110007
Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell Metabolism, 27(4), 757–785. https://doi.org/10.1016/j.cmet.2018.03.008
Broxterman, R. M., Layec, G., Hureau, T. J., Amann, M., & Richardson, R. S. (2017). Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Journal of Ap-plied Physiology (Bethesda, Md.: 1985), 122(5), 1208–1217. https://doi.org/10.1152/japplphysiol.01093.2016
Burnley, M., Vanhatalo, A., Fulford, J., & Jones, A. M. (2010). Similar metabolic perturbations during all‐out and constant force exhaustive exercise in humans: a 31P magnetic resonance spectroscopy study. Experimental Physiology, 95(7), 798–807. https://doi.org/10.1113/expphysiol.2010.052688
Bussweiler, J., & Hartmann, U. (2012). Energetics of basic karate Kata. European Journal of Applied Physiology, 112(12), 3991–3996. https://doi.org/10.1007/s00421-012-2383-z
Campbell-O’Sullivan, S. P., Constantin-Teodosiu, D., Peirce, N., & Greenhaff, P. L. (2002). Low intensity exercise in hu-mans accelerates mitochondrial ATP production and pulmonary oxygen kinetics during subsequent more intense exer-cise. The Journal of Physiology, 538(3), 931–939. https://doi.org/10.1113/jphysiol.2001.013238
Campos, F. A. D., Bertuzzi, R., Dourado, A. C., Santos, V. G. F., & Franchini, E. (2012). Energy demands in taekwondo athletes during combat simulation. European Journal of Applied Physiology, 112(4), 1221–1228. https://doi.org/10.1007/s00421-011-2071-4
Casey, A., Constantin-Teodosiu, D., Howell, S., Hultman, E., & Greenhaff, P. L. (1996). Metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans. American Journal of Physiology. Endocrinology and Metabolism, 271(1), E38–E43. https://doi.org/10.1152/ajpendo.1996.271.1.e38
Chamari, K., Ahmaidi, S., Blum, J. Y., Hue, O., Temfemo, A., Hertogh, C., Mercier, B., Prefaut, C., & Mercier, J. (2001). Venous blood lactate increase after vertical jumping in volley ball athltes. Eur J Appl Physiol, 85–191.
Dawson, B., Goodman, C., Lawrence, S., Preen, D., Polglaze, T., Fitzsimons, M., & Fournier, P. (1997). Muscle phospho-creatine repletion following single and repeated short sprint efforts. Scandinavian Journal of Medicine & Science in Sports, 7(4), 206–213. https://doi.org/10.1111/j.1600-0838.1997.tb00141.x
de Campos Mello, F., de Moraes Bertuzzi, R. C., Grangeiro, P. M., & Franchini, E. (2009). Energy systems contributions in 2,000 m race simulation: a comparison among rowing ergometers and water. European Journal of Applied Physiolo-gy, 107(5), 615–619. https://doi.org/10.1007/s00421-009-1172-9
di Prampero, P. E. (2003). Factors limiting maximal performance in humans. European Journal of Applied Physiolo-gy, 90(3–4), 420–429. https://doi.org/10.1007/s00421-003-0926-z
Dunst, A., Manunzio, C., Feldmann, A., & Hesse, C. (2023a). Applications of near-infrared spectroscopy in “anaerobic” diagnostics – SmO 2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maxi-mal pedalling rate. Biology of sport, 40(4), 1019–1031. https://doi.org/10.5114/biolsport.2023.122481
Dunst, A., Manunzio, C., Feldmann, A., & Hesse, C. (2023b). Applications of near-infrared spectroscopy in “anaerobic” diagnostics – SmO 2 kinetics reflect PCr dephosphorylation and correlate with maximal lactate accumulation and maxi-mal pedalling rate. Biology of sport, 40(4), 1019–1031. https://doi.org/10.5114/biolsport.2023.122481
Ferretti, G., Fagoni, N., Taboni, A., Bruseghini, P., & Vinetti, G. (2017). The physiology of submaximal exercise: The steady state concept. Respiratory Physiology & Neurobiology, 246, 76–85. https://doi.org/10.1016/j.resp.2017.08.005
Ferretti, G., Fagoni, N., Taboni, A., Vinetti, G., & di Prampero, P. E. (2022). A century of exercise physiology: key con-cepts on coupling respiratory oxygen flow to muscle energy demand during exercise. European Journal of Applied Physi-ology, 122(6), 1317–1365. https://doi.org/10.1007/s00421-022-04901-x
Franchi, M. V., Longo, S., Mallinson, J., Quinlan, J. I., Taylor, T., Greenhaff, P. L., & Narici, M. V. (2018). Muscle thick-ness correlates to muscle cross‐sectional area in the assessment of strength training‐induced hypertrophy. Scandinavian Journal of Medicine & Science in Sports, 28(3), 846–853. https://doi.org/10.1111/sms.12961
Franchini, E., Takito, M. Y., & Dal’Molin Kiss, M. A. P. (2016). Performance and energy systems contributions during upper-body sprint interval exercise. Journal of Exercise Rehabilitation, 12(6), 535–541. https://doi.org/10.12965/jer.1632786.393
Gaitanos, G. C., Williams, C., Boobis, L. H., & Brooks, S. (1993). Human muscle metabolism during intermittent maximal exercise. Journal of Applied Physiology (Bethesda, Md.: 1985), 75(2), 712–719. https://doi.org/10.1152/jappl.1993.75.2.712
Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine (Auck-land, N.Z.), 31(10), 725–741. https://doi.org/10.2165/00007256-200131100-00003
Glaister, M. (2005). Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fit-ness. Sports Medicine (Auckland, N.Z.), 35(9), 757–777. https://doi.org/10.2165/00007256-200535090-00003
Glancy, B., Kane, D. A., Kavazis, A. N., Goodwin, M. L., Willis, W. T., & Gladden, L. B. (2021). Mitochondrial lactate metabolism: history and implications for exercise and disease. The Journal of Physiology, 599(3), 863–888. https://doi.org/10.1113/jp278930
Green, S., & Dawson, B. (1993). Measurement of anaerobic capacities in humans: Definitions, limitations and unsolved problems. Sports Medicine (Auckland, N.Z.), 15(5), 312–327. https://doi.org/10.2165/00007256-199315050-00003
Greenhaff, P. L. (2001). The creatine-phosphocreatine system: there’s more than one song in its repertoire. The Journal of Physiology, 537(3), 657–657. https://doi.org/10.1111/j.1469-7793.2001.00657.x
Greenhaff, P. L. (2003). Milestones in human physiology: Muscle energy metabolism and blood flow during contraction. The Journal of Physiology, 551(Pt 2), 397–399. https://doi.org/10.1113/jphysiol.2003.044412
Gudbjarnason, S., Mathes, P., & Ravens, K. G. (1970). Compartimentación funcional de ATP y fosfato de creatina en el músculo cardíaco. J Mol Cell Cardiol, 1(3), 325–339.
Harvey, L., Wiegand, A., Solomon, C., Mclellan, C., & Lovell, D. (2015). A comparison of upper and lower body energet-ics during high-intensity exercise. The Journal of Sports Medicine and Physical Fitness, 55(7–8), 708–713.
Hawley, J. A., Hargreaves, M., Joyner, M. J., & Zierath, J. R. (2014). Integrative biology of exercise. Cell, 159(4), 738–749. https://doi.org/10.1016/j.cell.2014.10.029
Hermosilla Palma, F., Merino Muñoz, P., Marilaf Hormazábal, M., Aguilar Salazar, P., Vergara Otárola, B., Miarka, B., Aedo Muñoz, E., & Pérez Contreras, J. (2024). Asociación entre la aptitud física aeróbica y metabolismo glucolítico en futbolistas profesionales varones adultos (Association between aerobic fitness and glycolytic metabolism in adult male pro-fessional football players). Retos digital, 53, 508–513. https://doi.org/10.47197/retos.v53.100553
Hill, A. V., & Lupton, H. (1923). Ejercicio muscular, ácido láctico y el suministro y utilización de oxígeno. QJ Med, 16, 135–171.
Jacobs, H., Heldt, H. W., & Klingenberg, M. (1964). Alta actividad de la creatina quinasa en mitocondrias de músculos y cerebro y evidencia de una isoenzima mitocondrial separada de la creatina quinasa. Biochem Biophys Res Com-mun, 16(6), 516–521.
Jones, N. L., McCartney, N., Graham, T., Spriet, L. L., Kowalchuk, J. M., Heigenhauser, G. J., & Sutton, J. R. (1985). Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. Journal of Applied Physiology (Bethesda, Md.: 1985), 59(1), 132–136. https://doi.org/10.1152/jappl.1985.59.1.132
Karatzaferi, C., de Haan, A., Ferguson, R., van Mechelen, W., & Sargeant, A. (2001). Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflugers Archiv: European Journal of Physiolo-gy, 442(3), 467–474. https://doi.org/10.1007/s004240100552
Kaufmann, S., Latzel, R., Beneke, R., & Hoos, O. (2022). Reliability of the 3-component model of aerobic, anaerobic lactic, and anaerobic alactic energy distribution (PCr-LA-O2) for energetic profiling of continuous and intermittent exer-cise. International journal of sports physiology and performance, 17(11), 1642–1648. https://doi.org/10.1123/ijspp.2022-011
Krebs, H. A., & Kornberg, H. (1957). Transformación de energía en materia viva. Springer.
Krogh, A., & Lindhard, J. (1920). The changes in respiration at the transition from work to rest. The Journal of Physiolo-gy, 53(6), 431–439. https://doi.org/10.1113/jphysiol.1920.sp001889
Layec, G., Malucelli, E., Le Fur, Y., Manners, D., Yashiro, K., Testa, C., Cozzone, P. J., Iotti, S., & Bendahan, D. (2013). Effects of exercise‐induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three mus-cle groups in humans. NMR in Biomedicine, 26(11), 1403–1411. https://doi.org/10.1002/nbm.2966
Lee, H. J., Moon, J., Chung, I., Chung, J. H., Park, C., Lee, J. O., Han, J. A., Kang, M. J., Yoo, E. H., Kwak, S.-Y., Jo, G., Park, W., Park, J., Kim, K. M., Lim, S., Ngoei, K. R. W., Ling, N. X. Y., Oakhill, J. S., Galic, S., … Kim, H. S. (2019). ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33(12), 14825–14840. https://doi.org/10.1096/fj.201901440rr
Lovell, D., Kerr, A., Wiegand, A., Solomon, C., Harvey, L., & McLellan, C. (2013). The contribution of energy systems during the upper body Wingate anaerobic test. Applied Physiology Nutrition and Metabolism, 38(2), 216–219. https://doi.org/10.1139/apnm-2012-0101
Mader, A. (2003a). Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power out-put of the muscle cell. European Journal of Applied Physiology, 88(4), 317–338. https://doi.org/10.1007/s00421-002-0676-3
Mader, A. (2003b). Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power out-put of the muscle cell. European Journal of Applied Physiology, 88(4), 317–338. https://doi.org/10.1007/s00421-002-0676-3
Margaria, R., Cerretelli, P., diPrampero, P. E., Massari, C., & Torelli, G. (1963). Kinetics and mechanism of oxygen debt contraction in man. Journal of Applied Physiology (Bethesda, Md.: 1985), 18(2), 371–377. https://doi.org/10.1152/jappl.1963.18.2.371
Margaria, R., Cerretelli, P., & Mangili, F. (1964). Balance and kinetics of anaerobic energy release during strenuous exercise in man. Journal of Applied Physiology (Bethesda, Md.: 1985), 19(4), 623–628. https://doi.org/10.1152/jappl.1964.19.4.623
Margaria, R., Edwards, R., & Dill, D. B. (1933). Los posibles mecanismos de contracción y pago de la deuda de oxígeno y el papel del ácido láctico en la contracción muscular. Am J Physiol, 106, 689–715.
Margaria, Rodolfo. (1968). Capacity and power of the energy processes in muscle activity: Their practical relevance in ath-letics. European Journal of Applied Physiology, 25(4), 352–360. https://doi.org/10.1007/bf00699625
Marterer, N., Mugele, H., Schäfer, S. K., & Faulhaber, M. (2023). Effects of upper body exercise training on aerobic fitness and performance in healthy people: A systematic review. Biology, 12(3), 355. https://doi.org/10.3390/biology12030355
McLESTER, C. N., Rooks, R., McLESTER, J. R., Bechke, E., Williamson, C., & Kliszczewicz, B. M. (2023). A comparison of anaerobic power tests using cycle ergometry and nonmotorized treadmill ergometry at optimized loads. International Journal of Exercise Science, 16(4), 1293–1305.
Medbo, J. I., & Tabata, I. (1993). Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicy-cling. Journal of Applied Physiology (Bethesda, Md.: 1985), 75(4), 1654–1660. https://doi.org/10.1152/jappl.1993.75.4.1654
Meyerhof, O. (1920). Las paredes energéticas en Muskel III. Hidrato de colina y solución de suero de leche en el almizcle blanco. Pflügers Arch ges Physiol, 185, 11–32.
Meyerspeer, M., Boesch, C., Cameron, D., Dezortová, M., Forbes, S. C., Heerschap, A., Jeneson, J. A. L., Kan, H. E., Kent, J., Layec, G., Prompers, J. J., Reyngoudt, H., Sleigh, A., Valkovič, L., Kemp, G. J., & Experts’ Working Group on P MR Spectroscopy of Skeletal Muscle. (2021). 31P magnetic resonance spectroscopy in skeletal muscle: Experts’ con-sensus recommendations. NMR in Biomedicine, 34(5). https://doi.org/10.1002/nbm.4246
Milioni, F., Zagatto, A., Barbieri, R., Andrade, V., dos Santos, J., Gobatto, C., da Silva, A., Santiago, P., & Papoti, M. (2017). Energy systems contribution in the running-based anaerobic sprint test. International Journal of Sports Medi-cine, 38(03), 226–232. https://doi.org/10.1055/s-0042-117722
Mitchell, P. (1979). Compartmentation and communication in living systems. Ligand conduction: A general catalytic princi-ple in chemical, osmotic and chemiosmotic reaction systems. European Journal of Biochemistry, 95(1), 1–20. https://doi.org/10.1111/j.1432-1033.1979.tb12934.x
Mohr, A. E., Ramos, C., Tavarez, K., & Arciero, P. J. (2020). Lower postprandial thermogenic response to an unprocessed whole food meal compared to an Iso-energetic/macronutrient meal replacement in young women: A single-blind ran-domized cross-over trial. Nutrients, 12(8), 2469. https://doi.org/10.3390/nu12082469
Molinar Contreras, M., Perez Garcia, A. I., Ramos-Jiménez, A., Hernández Torres, R. P., & Chavez-Guevara, I. A. (2023). Aplicaciones de la Máxima Oxidación de Grasas y FATmax en la evaluación del rendimiento deportivo en atletas-de resis-tencia-: una revisión narrativa (Applications of Maximum Fat Oxidation and FATmax in the evaluation of sports perfor-mance in endurance-athletes: a narrative review). Retos digital, 47, 806–813. https://doi.org/10.47197/retos.v47.95197
Niess, F., Schmid, A. I., Bogner, W., Wolzt, M., Carlier, P., Trattnig, S., Moser, E., & Meyerspeer, M. (2020). Interleav-ed 31P MRS/1H ASL for analysis of metabolic and functional heterogeneity along human lower leg muscles at 7T. Magnetic Resonance in Medicine, 83(6), 1909–1919. https://doi.org/10.1002/mrm.28088
Ovens, A. J., Scott, J. W., Langendorf, C. G., Kemp, B. E., Oakhill, J. S., & Smiles, W. J. (2021). Post-translational modifi-cations of the energy guardian AMP-activated protein kinase. International Journal of Molecular Sciences, 22(3), 1229. https://doi.org/10.3390/ijms22031229
Özbay, S., Ulupınar, S., Gençoğlu, C., Ouergui, I., Öget, F., Yılmaz, H. H., Kishalı, N. F., Kıyıcı, F., Asan, S., Uçan, İ., & Ardigò, L. P. (2024). Effects of Ramadan intermittent fasting on performance, physiological responses, and bioenergetic pathway contributions during repeated sprint exercise. Frontiers in nutrition, 11. https://doi.org/10.3389/fnut.2024.1322128
Padulo, J., Buglione, A., Larion, A., Esposito, F., Doria, C., Čular, D., di Prampero, P. E., & Peyré-Tartaruga, L. A. (2023). Energy cost differences between marathon runners and soccer players: Constant versus shuttle running. Frontiers in physiology, 14. https://doi.org/10.3389/fphys.2023.1159228
Pampero, D. (1981). Energetics of muscular exercise. Rev Physiol Biochem Pharmacol, 89, 143–222.
Panissa, V. L. G., Fukuda, D. H., Caldeira, R. S., Gerosa-Neto, J., Lira, F. S., Zagatto, A. M., & Franchini, E. (2018). Is oxygen uptake measurement enough to estimate energy expenditure during high-intensity intermittent exercise? Quanti-fication of anaerobic contribution by different methods. Frontiers in physiology, 9. https://doi.org/10.3389/fphys.2018.00868
Papadopuloulos, S., Jürgens, K. D., & Gros, G. (2000). Difusión de proteínas en fibras musculares esqueléticas vivas: depen-dencia del tamaño de la proteína, tipo de fibra y contracción. Biophys J, 79(4), 2084–2094.
Parolin, M. L., Chesley, A., Matsos, M. P., Spriet, L. L., Jones, N. L., & Heigenhauser, G. J. (1999). Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent excersice. Am J Physiol, 277, E890-900.
Perry, C. G. R., Lally, J., Holloway, G. P., Heigenhauser, G. J. F., Bonen, A., & Spriet, L. L. (2010). Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle: Molecular responses during mitochondrial biogenesis. The Journal of Physiology, 588(23), 4795–4810. https://doi.org/10.1113/jphysiol.2010.199448
Pranoto, A., Rejeki, P. S., Miftahussurur, M., Yosika, G. F., Ihsan, M., Herawati, L., Rahmanto, I., & Halim, S. (2023). Aerobic exercise increases release of growth hormone in the blood circulation in obese women. Retos digital, 51, 726–731. https://doi.org/10.47197/retos.v51.99944
Price, M., Beckford, C., Dorricott, A., Hill, C., Kershaw, M., Singh, M., & Thornton, I. (2014). Oxygen uptake during upper body and lower body Wingate anaerobic tests. Applied Physiology Nutrition and Metabolism, 39(12), 1345–1351. https://doi.org/10.1139/apnm-2013-0405
Robergs, R., O’Malley, B., Torrens, S., & Siegler, J. (2024). The missing hydrogen ion, part-2: Where the evidence leads to. Sports Medicine and Health Science, 6(1), 94–100. https://doi.org/10.1016/j.smhs.2024.01.001
Saibene, F., & Minetti, A. E. (2003). Biomechanical and physiological aspects of legged locomotion in humans. European Journal of Applied Physiology, 88(4), 297–316. https://doi.org/10.1007/s00421-002-0654-9
Saks, V. A., & Ventura-Clapier, R. (1994). Bioenergética celular: papel de las creatina quinasas acopladas. Kluwer Academic Publishers.
Scott, C. (2014). Combustion, respiration and intermittent exercise: A theoretical perspective on oxygen uptake and energy expenditure. Biology, 3(2), 255–263. https://doi.org/10.3390/biology3020255
Scott, C. B. (1997). Interpreting energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis. The Journal of Sports Medicine and Physical Fitness, 37(1), 18–23.
Seemann-Sinn, A., Rüdrich, P., Gorges, T., Naundorf, F., & Wolfarth, B. (2023). Physiological and energetic demands dur-ing still-rings routines of elite artistic gymnasts. International journal of sports physiology and performance, 18(7), 704–710. https://doi.org/10.1123/ijspp.2022-0380
Sergeeva, X. V., Lvova, I. D., & Sharlo, K. A. (2024). Disuse-induced muscle fatigue: Facts and assumptions. International Journal of Molecular Sciences, 25(9), 4984. https://doi.org/10.3390/ijms25094984
Soydan, T. A., Hazir, T., Ozkan, A., & Kin-Isler, A. (2018a). Gender differences in repeated sprint ability. Isokinetics and exercise science, 26(1), 73–80. https://doi.org/10.3233/ies-180171191
Soydan, T. A., Hazir, T., Ozkan, A., & Kin-Isler, A. (2018b). Gender differences in repeated sprint ability. Isokinetics and exercise science, 26(1), 73–80. https://doi.org/10.3233/ies-180171191
Spriet, L. L. (1992). Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Canadian Journal of Physiology and Pharmacology, 70(1), 157–165. https://doi.org/10.1139/y92-023
Sweeney, H. L. (1994). La importancia de la reacción de la creatina quinasa: el concepto de capacidad metabólica. Medicina y ciencia en deportes y ejercicio. Enero de, 26(1), 30–36.
Tokarska-Schlattner, M., Zeaiter, N., Cunin, V., Attia, S., Meunier, C., Kay, L., Achouri, A., Hiriart-Bryant, E., Couturier, K., Tellier, C., El Harras, A., Elena-Herrmann, B., Khochbin, S., Le Gouellec, A., & Schlattner, U. (2023). Multi-method quantification of acetyl-coenzyme A and further acyl-coenzyme A species in normal and ischemic rat liv-er. International Journal of Molecular Sciences, 24(19), 14957. https://doi.org/10.3390/ijms241914957
Tortu, E., Ouergui, I., Ulupinar, S., Özbay, S., Gençoğlu, C., & Ardigò, L. P. (2024). The contribution of energy systems during 30-second lower body Wingate anaerobic test in combat sports athletes: Intermittent versus single forms and gen-der comparison. PloS One, 19(5), e0303888. https://doi.org/10.1371/journal.pone.0303888
Toti, L., Bartalucci, A., Ferrucci, M., Fulceri, F., Lazzeri, G., Lenzi, P., Soldani, P., La Torre, A., & Gesi, M. (2013a). High-intensity exercise training induces morphological and biochemical changes in skeletal muscles. Biology of sport, 30(4), 301–309. https://doi.org/10.5604/20831862.1077557
Toti, L., Bartalucci, A., Ferrucci, M., Fulceri, F., Lazzeri, G., Lenzi, P., Soldani, P., La Torre, A., & Gesi, M. (2013b). High-intensity exercise training induces morphological and biochemical changes in skeletal muscles. Biology of sport, 30(4), 301–309. https://doi.org/10.5604/20831862.1077557
Ulupınar, S., & Özbay, S. (2022). Energy pathway contributions during 60-second upper-body Wingate test in Greco-Roman wrestlers: intermittent versus single forms. Research in Sports Medicine, 30(3), 244–255. https://doi.org/10.1080/15438627.2021.1895784
Ulupınar, S., Özbay, S., Gençoğlu, C., Franchini, E., Kishalı, N. F., & İnce, İ. (2021). Effects of sprint distance and repeti-tion number on energy system contributions in soccer players. Journal of Exercise Science and Fitness, 19(3), 182–188. https://doi.org/10.1016/j.jesf.2021.03.003
van Loon, L. J. C., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H. M., & Wagenmakers, A. J. M. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. The Journal of Physiology, 536(1), 295–304. https://doi.org/10.1111/j.1469-7793.2001.00295.x
Van Someron, K. (2006). La fisiología del entrenamiento anaeróbico (G. Whyte, Ed.). Elsevier.
Vara-Ciruelos, D., Russell, F. M., & Hardie, D. G. (2019). The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? . Open Biology, 9(7). https://doi.org/10.1098/rsob.190099
Verzijl, H. T. F. M., van Engelen, B. G. M., Luyten, J. A. F. M., Steenbergen, G. C. H., van den Heuvel, L. P. W. J., ter Laak, H. J., Padberg, G. W., & Wevers, R. A. (1998). Genetic characteristics of myoadenylate deaminase deficien-cy. Annals of Neurology, 44(1), 140–143. https://doi.org/10.1002/ana.410440124
Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., & Eppenberger, H. M. (1992). Compartimentación intracelular, es-tructura y función de las isoenzimas de la creatina quinasa en tejidos con demandas energéticas altas y fluctuantes: el «cir-cuito de la fosfocreatina» para la homeostasis energética celular. Biochem J, 281, 21–40.
Yan, Y., Zhou, X. E., Xu, H. E., & Melcher, K. (2018). Structure and physiological regulation of AMPK. International Jour-nal of Molecular Sciences, 19(11), 3534. https://doi.org/10.3390/ijms19113534
Zagatto, A., Redkva, P., Loures, J., Filho, C. K., Franco, V., Kaminagakura, E., & Papoti, M. (2011). Anaerobic contribu-tion during maximal anaerobic running test: correlation with maximal accumulated oxygen deficit. Scandinavian Journal of Medicine & Science in Sports, 21(6). https://doi.org/10.1111/j.1600-0838.2010.01258.x
Zheng, T., Yang, X., Wu, D., Xing, S., Bian, F., Li, W., Chi, J., Bai, X., Wu, G., Chen, X., Zhang, Y., & Jin, S. (2015). Salidroside ameliorates insulin resistance through activation of a mitochondria‐associated AMPK/PI3K/Akt/GSK3β pathway. British Journal of Pharmacology, 172(13), 3284–3301. https://doi.org/10.1111/bph.13120
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Mauricio Ernesto Tauda, Eduardo Cruzat Bravo , Harry Castro Núñez, David Ismael Ergas Schleef
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess