Evaluación de la fuerza a través de la cinética del lactato y su correlación con el vo2max y frecuencia cardíaca en población con factores de riesgo: implicaciones para la salud metabólica (Evaluation of strength through lactate kinetics and correlation with vo2max and heart rate in population with risk factors implications for physical fitness and metabolic health)
DOI:
https://doi.org/10.47197/retos.v54.103653Resumen
Objetivos; Evaluar la cinética del lactato a través de la fuerza y determinar la correlación con la prueba de VO2max y frecuencia cardiaca en sujetos con factores de riesgo. Métodos; 15 participantes con una media de edad 35.5/4.1. Estatura 1.78/0.09. Peso 72.1/12.9. Realizaron una prueba de fuerza máxima en sentadilla y prueba maximal de consumo de oxígeno. en ambos casos se analizaron muestras de lactato sanguíneo. Resultados; Las variables de fuerza y resistencia exhiben una relación significativa, indicando una conexión directa con el metabolismo energético y los parámetros de entrenamiento aplicables. Se evidenció una fuerte asociación entre la frecuencia cardíaca máxima (FC max) en resistencia y fuerza, con un coeficiente de determinación (R²) de 0.981 (p < 0.001). Además, la relación entre los niveles de lactato en resistencia y fuerza fue notable, con un R² de 0.971 (p < 0.001). La carga (en kg) y la velocidad (en K/h) demostraron una correlación perfecta, con un R² de 1.000 y p < 0.001. La prueba de Anova de medias repetidas arrojó un valor significativo de p<0.005. Estos hallazgos respaldan de manera consistente la influencia interrelacionada de las variables medidas, proporcionando una comprensión más profunda de su conexión y relevancia en el contexto del entrenamiento. Conclusiones; El lactato se muestra como un marcador clave en la evaluación de la respuesta fisiológica durante las pruebas de fuerza. puede servir como un indicador útil para evaluar la respuesta metabólica y la demanda energética durante las pruebas de fuerza. Además, considerando su relación con la carga y la velocidad, el lactato puede contribuir a establecer zonas de entrenamiento específicas.
Palabras claves: Salud, Condición Física. Fuerza muscular. Adulto.
Abstract. Purpose; To evaluate lactate kinetics through strength and determine the correlation with the VO2max test and heart rate in subjects with risk factors. Methods; 15 participants with an average age of 35.5/4.1. Height 1.78/0.09. Weight 72.1/12.9. They performed a maximum squat strength test and a maximum oxygen consumption test. In both cases blood lactate samples were analyzed. Results; The strength and endurance variables exhibit a significant relationship, indicating a direct connection with the energetic metabolism and applicable training parameters. A strong association was observed between maximum heart rate (FC max) in endurance and strength, with a coefficient of determination (R²) of 0.981 (p < 0.001). Furthermore, the relationship between lactate levels in endurance and strength was notable, with an R² of 0.971 (p < 0.001). The load (in kg) and speed (in K/h) demonstrated a perfect correlation, with an R² of 1.000 and p < 0.001. The repeated measures Anova test yielded a significant value of p < 0.005. These findings consistently support the interconnected influence of the measured variables, providing a deeper understanding of their connection and relevance in the training context. Conclusions; Lactate is shown to be a key marker in the evaluation of the physiological response during strength tests. can serve as a useful indicator to evaluate metabolic response and energy demand during strength tests. Additionally, considering its relationship with load and speed, lactate can help establish specific training zones.
Keywords: Health, Physical Condition. Muscular strength. Adult.
Citas
Albesa-Albiol, L., Serra-Payá, N., Garnacho-Castaño, M. A., Guirao Cano, L., Pleguezuelos Cobo, E., Maté-Muñoz, J. L., & Garnacho-Castaño, M. V. (2019). Ventilatory efficiency during constant-load test at lactate threshold in-tensity: Endurance versus resistance exercises. PloS One, 14(5), e0216824. https://doi.org/10.1371/journal.pone.0216824
Anderson, L., Oldridge, N., Thompson, D. R., Zwisler, A.-D., Rees, K., Martin, N., & Taylor, R. S. (2016). Exer-cise-based cardiac rehabilitation for coronary heart disease: Cochrane systematic review and meta-analysis. Journal of the American College of Cardiology, 67(1), 1–12. https://doi.org/10.1016/j.jacc.2015.10.044
Bangsbo, J., Blackwell, J., Boraxbekk, C.-J., Caserotti, P., Dela, F., Evans, AB, Jespersen, AP, Gliemann, L., Kra-mer, AF, Lundbye-Jensen, J ., Mortensen, EL, Lassen, AJ, Gow, AJ, Harridge, SDR, Hellsten, Y., Kjaer, M., Kujala, UM, Rhodes, RE, Pike, TJCE,… Viña, J. (2019). Declaración de Consenso de Copenhague 2019: activi-dad física y envejecimiento. Revista Británica de Medicina Deportiva , 53 (14), 856–858. https://doi.org/10.1136/bjsports-2018-100451
Benfica, P. do A., Aguiar, LT, de Brito, SAF, Bernardino, LHN, Teixeira-Salmela, LF, & Faria, CDC de M. (2019). Errata de valores de referencia de fuerza muscular: una revisión sistemática con metanálisis descriptivo [Revista Brasileña de Fisioterapia (2019) 355-369]. Revista Brasileña de Fisioterapia , 23 (6), 549. https://doi.org/10.1016/j.bjpt.2019.10.001
Berra K, Rippe J, Manson JE. Making Physical Activity Counseling a Priority in Clinical Practice: The Time for Action Is Now. JAMA. 2015 Dec 22-29;314(24):2617-8. doi: 10.1001/jama.2015.16244. PMID: 26662069.
Bingel, A., Messroghli, D., Weimar, A., Runte, K., Salcher-Konrad, M., Kelle, S., … Kelm, M. (2022). Hemodynamic changes during physiological and pharmacological stress testing in patients with heart failure: A systematic review and meta-analysis. Frontiers in Cardiovascular Medicine, 9, 718114. doi:10.3389/fcvm.2022.71811
Borg, E. y Kaijser, L. (2006). Una comparación entre tres escalas de calificación del esfuerzo percibido y dos pruebas de trabajo diferentes. Revista escandinava de medicina y ciencia en el deporte , 16 (1), 57–69. https://doi.org/10.1111/j.1600-0838.2005.00448.x
Butzer JF, Kozlowski AJ, Hern R, Gooch C. Randomized Trial of Two Exercise Programs to Increase Physical Activity and Health-Related Quality of Life for Persons With Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2023 Fall;29(4):51-60. doi: 10.46292/sci22-00042. Epub 2023 Dec 1. PMID: 38076491; PMCID: PMC10704219.
Brooks, G. A. (2018). The science and translation of lactate shuttle theory. Cell metabolism, 27(4), 757–785. https://doi.org/10.1016/j.cmet.2018.03.008
Brooks, G. A. (2020). Lactate as a fulcrum of metabolism. Redox Biology, 35(101454), 101454. https://doi.org/10.1016/j.redox.2020.101454
Campos, Y., Vianna, J., Guimarães, M., Domínguez, R., Azevedo, P. H., Ana, L. S., Leitão, L., Novaes, J., Silva, S., & Reis, V. (2020). Comparison of methods to determine the lactate threshold during leg press exercise in long-distance runners. Motriz: revista de educacao fisica. UNESP, 26(2). https://doi.org/10.1590/s1980-6574202000020207
Caruso, F. R., Junior, J. C. B., Mendes, R. G., Sperling, M. P., Arakelian, V. M., Bassi, D., Arena, R., & Borghi-Silva, A. (2016). Hemodynamic and metabolic response during dynamic and resistance exercise in different intensities: a cross-sectional study on implications of intensity on safety and symptoms in patients with coronary disease. American Journal of Cardiovascular Disease, 6(2), 36–45.
Carvalho, T. de, Milani, M., Ferraz, A. S., Silveira, A. D. da, Herdy, A. H., Hossri, C. A. C., Silva, C. G. S. E., Araújo, C. G. S. de, Rocco, E. A., Teixeira, J. A. C., Dourado, L. O. C., Matos, L. D. N. J. de, Emed, L. G. M., Ritt, L. E. F., Silva, M. G. da, Santos, M. A. D., Silva, M. M. F. da, Freitas, O. G. A. de, Nascimento, P. M. C., … Serra, S. M. (2020). Diretriz brasileira de reabilitação cardiovascular – 2020. Arquivos Brasileiros de Cardiologia, 114(5), 943–987. https://doi.org/10.36660/abc.20200407
Casado, A., González-Mohíno, F., González-Ravé, J. M., & Foster, C. (2022). Training periodization, methods, in-tensity distribution, and volume in highly trained and elite distance runners: A systematic review. International jour-nal of sports physiology and performance, 17(6), 820–833. https://doi.org/10.1123/ijspp.2021-0435
Chen YC, Chen WC, Liu CW, Huang WY, Lu I, Lin CW, Huang RY, Chen JS, Huang CH. Is moderate resistance training adequate for older adults with sarcopenia? A systematic review and network meta-analysis of RCTs. Eur Rev Aging Phys Act. 2023 Nov 29;20(1):22. doi: 10.1186/s11556-023-00333-4. PMID: 38030985; PMCID: PMC10687931.
Decostre, V., Canal, A., Ollivier, G., Ledoux, I., Moraux, A., Doppler, V., Payan, C. A. M., & Hogrel, J.-Y. (2015). Wrist flexion and extension torques measured by highly sensitive dynamometer in healthy subjects from 5 to 80 years. BMC Musculoskeletal Disorders, 16(1), 4. https://doi.org/10.1186/s12891-015-0458-9
Dornas, F. M., Bispo, F. M. M., Viana, Y. G., Vasconcelos, J. M., de Carvalho Lana, R., & Polese, J. C. (2023). Pre-dictors of balance in individuals with Parkinson’s disease: A cross-sectional study. Journal of Bodywork and Movement Therapies, 35, 64–68. https://doi.org/10.1016/j.jbmt.2023.04.041
Franklin BA, Eijsvogels TMH, Pandey A, Quindry J, Toth PP. Physical activity, cardiorespiratory fitness, and cardio-vascular health: A clinical practice statement of the American Society for Preventive Cardiology Part II: Physical ac-tivity, cardiorespiratory fitness, minimum and goal intensities for exercise training, prescriptive methods, and spe-cial patient populations. Am J Prev Cardiol. 2022 Oct 13;12:100425. doi: 10.1016/j.ajpc.2022.100425. PMID: 36281325; PMCID: PMC9586849.
Gan, Z., Fu, T., Kelly, D. P., & Vega, R. B. (2018). Skeletal muscle mitochondrial remodeling in exercise and diseas-es. Cell Research, 28(10), 969–980. https://doi.org/10.1038/s41422-018-0078-7
Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., & Lee, I.-M. (2011). American Col-lege of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardi-orespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exer-cise: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334–1359
Galvan-Alvarez V, Martin-Rincon M, Gallego-Selles A, Martínez Canton M, HamedChaman N, Gelabert-Rebato M, Perez-Valera M, García-Gonzalez E, Santana A, Holmberg HC, Boushel R, Hallén J, Calbet JAL. Determinants of the maximal functional reserve during repeated supramaximal exercise by humans: The roles of Nrf2/Keap1, anti-oxidant proteins, muscle phenotype and oxygenation. Redox Biol. 2023 Oct;66:102859. doi: 10.1016/j.redox.2023.102859. Epub 2023 Aug 22. PMID: 37666117; PMCID: PMC10491831.
Garnacho-Castaño, M. V., Dominguez, R., & Maté-Muñoz, J. L. (2015). Understanding the meaning of lactate threshold in resistance exercises. International Journal of Sports Medicine, 36(5), e8. https://doi.org/10.1055/s-0035-1548803
Geidl, W., Abu-Omar, K., Weege, M., Messing, S., & Pfeifer, K. (2020). German recommendations for physical activity and physical activity promotion in adults with noncommunicable diseases. The International Journal of Behav-ioral Nutrition and Physical Activity, 17(1), 12. https://doi.org/10.1186/s12966-020-0919-x
Gryko, K., Adamczyk, J. G., Kopiczko, A., Calvo, J. L., Calvo, A. L., & Mikołajec, K. (2022). Does predicted age at peak height velocity explain physical performance in U13–15 basketball female players? BMC Sports Science, Medi-cine and Rehabilitation, 14(1). https://doi.org/10.1186/s13102-022-00414-4
Hansen, D., Abreu, A., Ambrosetti, M., Cornelissen, V., Gevaert, A., Kemps, H., Laukkanen, J. A., Pedretti, R., Simonenko, M., Wilhelm, M., Davos, C. H., Reviewers:, Doehner, W., Iliou, M.-C., Kränkel, N., Völler, H., & Piepoli, M. (2022). Exercise intensity assessment and prescription in cardiovascular rehabilitation and beyond: why and how: a position statement from the Secondary Prevention and Rehabilitation Section of the European Associa-tion of Preventive Cardiology. European Journal of Preventive Cardiology, 29(1), 230–245. https://doi.org/10.1093/eurjpc/zwab007
Hanssen, B., Peeters, N., De Beukelaer, N., Vannerom, A., Peeters, L., Molenaers, G., Van Campenhout, A., Deschepper, E., Van den Broeck, C., & Desloovere, K. (2022). Progressive resistance training for children with cerebral palsy: A randomized controlled trial evaluating the effects on muscle strength and morphology. Frontiers in physiology, 13. https://doi.org/10.3389/fphys.2022.911162
Impellizzeri, F. M., Marcora, S. M., & Coutts, A. J. (2019). Internal and external training load: 15 years on. International Journal of Sports Physiology and Performance, 14(2), 270–273. https://doi.org/10.1123/ijspp.2018-0935
Jackson, AS y Pollock, ML (2004). Ecuaciones generalizadas para predecir la densidad corporal de los hom-bres. 1978. Revista Británica de Nutrición , 91 (1), 161–168
King, A. C., Powell, K. E., & Kraus, W. E. (2019). The US physical activity guidelines advisory committee report-introduction. Medicine and Science in Sports and Exercise, 51(6), 1203–1205. https://doi.org/10.1249/MSS.0000000000001946
Kokkinos, P., Kaminsky, L. A., Arena, R., Zhang, J., & Myers, J. (2018). A new generalized cycle ergometry equation for predicting maximal oxygen uptake: The Fitness Registry and the Importance of Exercise National Database (FRIEND). European Journal of Preventive Cardiology, 25(10), 1077–1082. https://doi.org/10.1177/2047487318772667
Lacio, M., Vieira, J. G., Trybulski, R., Campos, Y., Santana, D., Filho, J. E., Novaes, J., Vianna, J., & Wilk, M. (2021). Effects of resistance training performed with different loads in untrained and trained male adult individuals on maximal strength and muscle hypertrophy: A systematic review. International Journal of Environmental Research and Public Health, 18(21). https://doi.org/10.3390/ijerph182111237Lesnak, J. B., Anderson, D. T., Farmer, B. E., Katsavelis, D., & Grindstaff, T. L. (2020). Ability of isokinetic dynamometer to predict isotonic knee extension 1-repetition maximum. Journal of Sport Rehabilitation, 29(5), 616–620. https://doi.org/10.1123/jsr.2018-0396
Li, Z., Zhi, P., Yuan, Z., García-Ramos, A., & King, M. (2023). Feasibility of vertical force–velocity profiles to moni-tor changes in muscle function following different fatigue protocols. European Journal of Applied Physiology. https://doi.org/10.1007/s00421-023-05283-4
Liguori, G. (2021). Directrices del ACSM para pruebas de ejercicio y prescripción. Wolters Kluwer Salud.
Lixandrão, M. E., Ugrinowitsch, C., Berton, R., Vechin, F. C., Conceição, M. S., Damas, F., Libardi, C. A., & Roschel, H. (2018). Magnitude of muscle strength and mass adaptations between high-load resistance training ver-sus low-load resistance training associated with blood-flow restriction: A systematic review and meta-analysis. Sports Medicine (Auckland, N.Z.), 48(2), 361–378. https://doi.org/10.1007/s40279-017-0795-y
Lloyd, R. S., Cronin, J. B., Faigenbaum, A. D., Haff, G. G., Howard, R., Kraemer, W. J., Micheli, L. J., Myer, G. D., & Oliver, J. L. (2016). National Strength and Conditioning Association position statement on long-term athletic de-velopment. Journal of Strength and Conditioning Research, 30(6), 1491–1509. https://doi.org/10.1519/JSC.0000000000001387
Lopez, P., Radaelli, R., Taaffe, D. R., Galvão, D. A., Newton, R. U., Nonemacher, E. R., Wendt, V. M., Bassanesi, R. N., Turella, D. J. P., & Rech, A. (2022). Moderators of resistance training effects in overweight and obese adults: A systematic review and meta-analysis. Medicine and Science in Sports and Exercise, 54(11), 1804–1816. https://doi.org/10.1249/MSS.0000000000002984
Lopez, P., Radaelli, R., Taaffe, D. R., Newton, R. U., Galvão, D. A., Trajano, G. S., Teodoro, J. L., Kraemer, W. J., Häkkinen, K., & Pinto, R. S. (2021). Resistance training load effects on muscle hypertrophy and strength gain: Sys-tematic review and network meta-analysis. Medicine and Science in Sports and Exercise, 53(6), 1206–1216. https://doi.org/10.1249/mss.0000000000002585
Lum, D., & Barbosa, T. M. (2019). Brief review: Effects of isometric strength training on strength and dynamic per-formance. International Journal of Sports Medicine, 40(06), 363–375. https://doi.org/10.1055/a-0863-4539
Lum, D., Joseph, R., Ong, K. Y., Tang, J. M., & Suchomel, T. J. (2023). Comparing the effects of long-term vs. Peri-odic inclusion of isometric strength training on strength and dynamic performances. Journal of Strength and Condi-tioning Research, 37(2), 305–314. https://doi.org/10.1519/JSC.0000000000004276
Mann, S., Beedie, C., & Jimenez, A. (2014). Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports medicine (Auckland, N.Z.), 44(2), 211–221. https://doi.org/10.1007/s40279-013-0110-. (s/f).
Martin, A. D., Spenst, L. F., Drinkwater, D. T., & Clarys, J. P. (1990). Anthropometric estimation of muscle mass in men. Medicine and Science in Sports and Exercise, 22(5), 729–733. doi:10.1249/00005768-199010000-00027
Masuda, T., Takeuchi, S., Kubo, Y., & Nishida, Y. (2022). Validity of anaerobic threshold measured in resistance ex-ercise. Journal of Physical Therapy Science, 34(3), 199–203. https://doi.org/10.1589/jpts.34.199
Maté-Muñoz, J. L., Domínguez, R., Lougedo, J. H., & Garnacho-Castaño, M. V. (2017). The lactate and ventilatory thresholds in resistance training. Clinical Physiology and Functional Imaging, 37(5), 518–524. https://doi.org/10.1111/cpf.12327
McKay, M. J., Baldwin, J. N., Ferreira, P., Simic, M., Vanicek, N., Burns, J., & For the 1000 Norms Project Consorti-um. (2017). Normative reference values for strength and flexibility of 1,000 children and adults. Neurology, 88(1), 36–43. https://doi.org/10.1212/wnl.0000000000003466
Muñoz-Martínez, F. A., Rubio-Arias, J. Á., Ramos-Campo, D. J., & Alcaraz, P. E. (2017). Effectiveness of resistance circuit-based training for maximum oxygen uptake and upper-body one-repetition maximum improvements: A sys-tematic review and meta-analysis. Sports Medicine (Auckland, N.Z.), 47(12), 2553–2568. https://doi.org/10.1007/s40279-017-0773-4
(ncd), N. D. (2020, marzo 17). Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey. Who.int; World Health Organization. https://www.who.int/publications/i/item/9789240002319
Noorkõiv, M., Nosaka, K., & Blazevich, A. J. (2014). Neuromuscular adaptations associated with knee joint angle-specific force change. Medicine and Science in Sports and Exercise, 46(8), 1525–1537. https://doi.org/10.1249/MSS.0000000000000269
Ofner, M., Wonisch, M., Frei, M., Tschakert, G., Domej, W., Kröpfl, J. M., & Hofmann, P. (2014). Influence of acute normobaric hypoxia on physiological variables and lactate turn point determination in trained men. Journal of Sports Science & Medicine, 13(4), 774–781.
Padilla Colón, Carlos J., Sánchez Collado, Pilar, & Cuevas, María José. (2014). Beneficios del entrenamiento de fuer-za para la prevención y tratamiento de la sarcopenia. Nutrición Hospitalaria, 29(5), 979-988. https://dx.doi.org/10.3305/nh.2014.29.5.7313
Pescatello, L. S., Wu, Y., Panza, G. A., Zaleski, A., & Guidry, M. (2021). Development of a novel clinical decision support system for exercise prescription among patients with multiple cardiovascular disease risk factors. Mayo Clinic Proceedings. Innovations, Quality & Outcomes, 5(1), 193–203. https://doi.org/10.1016/j.mayocpiqo.2020.08.005
Peña, JC, Martín-Alemán, WF, Alberto-Cardozo, L., Castillo-Daza, CA, Andrés-Yánez, C. y Téllez Tinjca, LA (2022). Effects of the Intrasession Ejercicio Sequence of Concurrent Training on Older Women's Body Composi-tion and Physical Fitness (Efectos de la secuencia de ejercicios intrasesión del entrenamiento concurrente sobre la composición corporal y la aptitud física. Retos digital , 45 , 760–766. doi:10.47197/ retos.v45i0.92613
Pfeiffer, K. A., Pivarnik, J. M., Womack, C. J., Reeves, M. J., & Malina, R. M. (2002). Reliability and validity of the Borg and OMNI rating of perceived exertion scales in adolescent girls. Medicine and Science in Sports and Exer-cise, 34(12), 2057–2061. https://doi.org/10.1097/00005768-200212000-0002
Quemba-Joya, D. K. (2023). Entrenamiento neuromuscular integrativo como herramienta para optimizar el rendi-miento deportivo en diferentes grupos etarios y niveles competitivos. Revisión de literatura. Revista digital: Actividad Física y Deporte, 9(1). https://doi.org/10.31910/rdafd.v9.n1.2023.2261
Ramsey, K. A., Rojer, A. G. M., D’Andrea, L., Otten, R. H. J., Heymans, M. W., Trappenburg, M. C., Verlaan, S., Whittaker, A. C., Meskers, C. G. M., & Maier, A. B. (2021). The association of objectively measured physical ac-tivity and sedentary behavior with skeletal muscle strength and muscle power in older adults: A systematic review and meta-analysis. Ageing Research Reviews, 67(101266), 101266. https://doi.org/10.1016/j.arr.2021.101266
Resende, R. A., Jardim, S. H. O., Filho, R. G. T., Mascarenhas, R. O., Ocarino, J. M., & Mendonça, L. D. M. (2020). Does trunk and hip muscles strength predict performance during a core stability test? Brazilian Journal of Physical Therapy, 24(4), 318–324. https://doi.org/10.1016/j.bjpt.2019.03.001
Saeidifard, F., Medina-Inojosa, J. R., West, C. P., Olson, T. P., Somers, V. K., Bonikowske, A. R., Prokop, L. J., Vinciguerra, M., & Lopez-Jimenez, F. (2019). The association of resistance training with mortality: A systematic review and meta-analysis. European Journal of Preventive Cardiology, 26(15), 1647–1665. https://doi.org/10.1177/2047487319850718
Schoenfeld, B. J., Grgic, J., Ogborn, D., & Krieger, J. W. (2017). Strength and hypertrophy adaptations between low- vs. High-load resistance training: A systematic review and meta-analysis. Journal of Strength and Conditioning Re-search, 31(12), 3508–3523. https://doi.org/10.1519/jsc.0000000000002200
Schoenfeld, B. J., Wilson, J. M., Lowery, R. P., & Krieger, J. W. (2016). Muscular adaptations in low- versus high-load resistance training: A meta-analysis. European Journal of Sport Science: EJSS: Official Journal of the European Col-lege of Sport Science, 16(1), 1–10. https://doi.org/10.1080/17461391.2014.989922
Simões, R. P., Castello-Simões, V., Mendes, R. G., Archiza, B., dos Santos, D. A., Bonjorno, J. C., Jr, de Oliveira, C. R., Catai, A. M., Arena, R., & Borghi-Silva, A. (2014). Identification of anaerobic threshold by analysis of heart rate variability during discontinuous dynamic and resistance exercise protocols in healthy older men. Clinical Physi-ology and Functional Imaging, 34(2), 98–108. https://doi.org/10.1111/cpf.12070
Spendier, F., Müller, A., Korinek, M., & Hofmann, P. (2020). Intensity thresholds and maximal lactate steady state in small muscle group exercise. Sports, 8(6), 77. https://doi.org/10.3390/sports8060077
Stone, M. H., Hornsby, W. G., Suarez, D. G., Duca, M., & Pierce, K. C. (2022). Training specificity for athletes: Em-phasis on strength-power training: A narrative review. Journal of Functional Morphology and Kinesiology, 7(4), 102. https://doi.org/10.3390/jfmk7040102
Tagashira, S., Kurose, S., & Kimura, Y. (2021). Improvements in exercise tolerance with an exercise intensity above the anaerobic threshold in patients with acute myocardial infarction. Heart and Vessels, 36(6), 766–774. https://doi.org/10.1007/s00380-020-01757-z
Tøien, T., Pedersen Haglo, H., Unhjem, R., Hoff, J., & Wang, E. (2018). Maximal strength training: the impact of eccentric overload. Journal of Neurophysiology, 120(6), 2868–2876. https://doi.org/10.1152/jn.00609.2018
Torres, A., Tennant, B., Ribeiro-Lucas, I., Vaux-Bjerke, A., Piercy, K., & Bloodgood, B. (2018). Umbrella and sys-tematic review methodology to support the 2018 Physical Activity Guidelines Advisory Committee. Journal of Physi-cal Activity & Health, 15(11), 805–810. https://doi.org/10.1123/jpah.2018-0372
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess