Rhodiola Rosea: a plant from the Crassulaceae family that has the potential to reduce muscle pain and increase range of motion during exercise-induced muscle damage
DOI:
https://doi.org/10.47197/retos.v58.107977Keywords:
Rhodiola Rosea, Muscle Pain, Range of Motion, Exercise-Induced Muscle Damage, InflammationAbstract
This study aims to analyze the potential of rhodiola rosea in reducing muscle pain and increasing ROM during EIMD. This experimental research uses a pre- and post-control group design. Research subjects were selected using a purposive sampling technique, then the subjects were divided into 2 groups, namely group (K1) which was given placebo and group (K2) which was given rhodiola rosea at a dose of 500 mg. A total of 18 healthy men aged between 19-25 years participated in this study. Data collection began on the first day by collecting data on subject characteristics. After that, they were asked to warm up. Physical activity is carried out afterward. These activities include high-intensity activities, such as walking lunges, good mornings, and leg extensions. This exercise is done in 4 sets with a 1-minute break (recovery) between sets. Exercise intensity is monitored using a Polar H9 Heart Rate Sensor. On day 2 or 24 hours after training, subjects took pre-test data to measure muscle soreness and ROM. Subjects were then given placebo or rhodiola rosea treatment, depending on the group assigned. On the 3rd day or 48 hours after training, post-test data was collected again. Muscle intensity was measured using a Visual Analog Scale (VAS) and ROM was measured at the knee joint using a goniometer. After the data was obtained, the data were analyzed using the IBM SPSS version 26 application. The results of this study reported that the K1 group given placebo did not significantly reduce muscle pain and increase ROM during EIMD, while the K2 group given rhodiola rosea at a dose of 500 mg significantly reduced pain. muscle and increase ROM during EIMD. Considering that pain management and ROM are very necessary to support body function, we recommend the use of rhodiola rosea for sports enthusiasts to support physical performance.
Keywords: Rhodiola Rosea, Muscle Pain, Range of Motion, Exercise-Induced Muscle Damage, Inflammation, Healthy lifestyle
References
Ayubi, N., Yuniarti, E., Kusnanik, NW., Herawati, L., Indika, PM., Putra RY., Komaini, A. (2022). Acute effects of n-3 polyunsaturated fatty acids (PUFAs) reducing tumor necrosis factor-alpha (TNF-a) levels and not lowering malondialdehyde (MDA) levels after anaerobic exercise. Journal of Biological Regulators and Homeostatic Agents, 36(1); 7-11 https://doi.org/10.23812/21-468-A.
Ayubi, N., Purwanto, B., Rejeki, PS., Kusnanik, NW., Herawati, L., Komaini, A., Mutohir, TC., Nurhasan, N., Al Ardha, MA., & Firmansyah, A. (2022). Effect of acute omega 3 supplementation reduces serum tumor necrosis factor-alpha (TNF-a) levels, pain intensity, and maintains muscle strength after high-intensity weight training. Retos, 46; 677–682. https://doi.org/10.47197/retos.v46.93720.
Bernatoniene, J., Jakstas, V., Kopustinskiene, DM. (2023). Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. International Journal of Molecular Sciences, 24(15); 12293. https://doi.org/10.3390/ijms241512293.
Drafi, F., Bauerova, K., Chrastina, M., Taghdisiesfejír, M., Rocha, J., Direito, R., Figueira, ME., Sepodes, B., Ponist, S. (2023). Rhodiola rosea L. Extract, a Known Adaptogen, Evaluated in Experimental Arthritis. Molecules, 28(13); 5053. https://doi.org/10.3390/molecules28135053.
Ezike, TC., Okpala, US., Onoja, UL., Nwike, CP., Ezeako, EC., Okpara, OJ., Okoroafor, CC., Eze, SC., Kalu, OL., Odoh, EC., Nwadike, UG., Ogbodo, JO., Umeh, BU., Ossai, EC., & Nwanguma, BC. (2023). Advances in drug delivery systems, challenges and future directions. Heliyon, 9(6); e17488. https://doi.org/10.1016/j.heliyon.2023.e17488.
Fernández-Lázaro, D., Mielgo-Ayuso, J., Seco Calvo, J., Córdova Martínez, A., Caballero García, A., & Fernandez-Lazaro, C. I. (2020). Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. Nutrients, 12(2); 501. https://doi.org/10.3390/nu12020501.
Hody, S., Croisier, JL., Bury, T., Rogister, B., & Leprince, P. (2019). Eccentric Muscle Contractions: Risks and Benefits. Frontiers in physiology, 10; 536. https://doi.org/10.3389/fphys.2019.00536.
Ivanova Stojcheva, E., & Quintela, J. C. (2022). The Effectiveness of Rhodiola rosea L. Preparations in Alleviating Various Aspects of Life-Stress Symptoms and Stress-Induced Conditions-Encouraging Clinical Evidence. Molecules (Basel, Switzerland), 27(12); 3902. https://doi.org/10.3390/molecules27123902.
Konrad, A., Kasahara, K., Yoshida, R., Yahata, K., Sato, S., Murakami, Y., Aizawa, K., & Nakamura, M. (2022). Relationship between Eccentric-Exercise-Induced Loss in Muscle Function to Muscle Soreness and Tissue Hardness. Healthcare (Basel, Switzerland), 10(1); 96. https://doi.org/10.3390/healthcare10010096.
Lee, Y., Jung, JC., Jang, S., Kim, J., Ali, Z., Khan, IA., & Oh, S. (2013). Anti-Inflammatory and Neuroprotective Effects of Constituents Isolated from Rhodiola rosea. Evidence-based complementary and alternative medicine : eCAM, 2013; 514049. https://doi.org/10.1155/2013/514049.
Li, Y., Pham, V., Bui, M., Song, L., Wu, C., Walia, A., Uchio, E., Smith-Liu, F., & Zi, X. (2017). Rhodiola rosea L.: an herb with anti-stress, anti-aging, and immunostimulating properties for cancer chemoprevention. Current pharmacology reports, 3(6); 384–395. https://doi.org/10.1007/s40495-017-0106-1.
Lu, Y., Deng, B., Xu, L., Liu, H., Song, Y., & Lin, F. (2022). Effects of Rhodiola Rosea Supplementation on Exercise and Sport: A Systematic Review. Frontiers in nutrition, 9; 856287. https://doi.org/10.3389/fnut.2022.856287.
Mahesh, G., Anil Kumar, K., & Reddanna, P. (2021). Overview on the Discovery and Development of Anti-Inflammatory Drugs: Should the Focus Be on Synthesis or Degradation of PGE2?. Journal of inflammation research, 14; 253–263. https://doi.org/10.2147/JIR.S2785144.
Nanavati, K., Rutherfurd-Markwick, K., Lee, SJ., Bishop, NC., & Ali, A. (2022). Effect of curcumin supplementation on exercise-induced muscle damage: a narrative review. European journal of nutrition, 61(8); 3835–3855. https://doi.org/10.1007/s00394-022-02943-7.
Nonnenmacher, Y., & Hiller, K. (2018). Biochemistry of proinflammatory macrophage activation. Cellular and molecular life sciences : CMLS, 75(12); 2093–2109. https://doi.org/10.1007/s00018-018-2784-1.
Paulsen, G., Crameri, R., Benestad, HB., Fjeld, JG., Mørkrid, L., Hallén, J., & Raastad, T. (2010). Time course of leukocyte accumulation in human muscle after eccentric exercise. Medicine and science in sports and exercise, 42(1); 75–85. https://doi.org/10.1249/MSS.0b013e3181ac7adb.
Tsagareli, M. G., Tsiklauri, N., Nozadze, I., & Gurtskaia, G. (2012). Tolerance effects of non-steroidal anti-inflammatory drugs microinjected into central amygdala, periaqueductal grey, and nucleus raphe: Possible cellular mechanism. Neural regeneration research, 7(13); 1029–1039. https://doi.org/10.3969/j.issn.1673-5374.2012.13.010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Retos
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.