Investigating the Impact of Varied Dosages of Royal Jelly Consumption on Creatine Kinase and Interleukin-6 Levels Post High-Intensity Resistance Training

Authors

  • Sendy Mohamad Anugrah Universitas Sultan Ageng Tirtayasa https://orcid.org/0000-0002-1090-9555
  • Nining Widyah Kusnanik Universitas Negeri Surabaya
  • Endang Sri Wahjuni Universitas Negeri Surabaya
  • Ida Zubaida Universitas Sultan Ageng Tirtayasa
  • Rian Triprayogo Universitas Sultan Ageng Tirtayasa
  • Danang Prama Dhani Universitas Sultan Ageng Tirtayasa
  • Dadan Resmana Universitas Negeri Jakarta https://orcid.org/0000-0001-7918-4209
  • Novadri Ayubi Universitas Negeri Surabaya https://orcid.org/0000-0002-5196-6636
  • Eka Sari Universitas Sultan Ageng Tirtayasa
  • Rizki Mulyawan Universitas Negeri Yogyakarta https://orcid.org/0000-0002-0180-5025

DOI:

https://doi.org/10.47197/retos.v55.103569

Keywords:

Suplementación, Biomarcadores, Jalea Real, Fatiga

Abstract

This study aimed to investigate the effects of ingesting royal jelly sports gel at doses of 1500 mg, 3000 mg, and 4500 mg after 48 hours of high-intensity weight training on creatine kinase (CK) and interleukin-6 (IL-6) levels. A total of 16 participants were recruited and randomly assigned to four groups: placebo, 1500 mg, 3000 mg, and 4500 mg of royal jelly sports gel. Blood samples were collected before and after the intervention to measure CK and IL-6 levels. The results revealed a significant reduction in CK and IL-6 levels in the 4500 mg royal jelly group compared to the placebo group. However, no significant changes were observed in the 1500 mg and 3000 mg groups. These findings suggest that the consumption of royal jelly sports gel at a dosage of 4500 mg may positively influence recovery processes after high-intensity weight training by mitigating muscle damage and inflammation. Further research is needed to elucidate the potential benefits and optimal dosages of royal jelly in enhancing exercise recovery.

Keywords: Suplementation, Biomarkers, Royal Jelly, Fatique

References

Allen, T. J., Jones, T., Tsay, A., Morgan, D. L., & Proske, U. (2018). Muscle damage produced by isometric contractions in human elbow flexors. J Appl Physiol, 124, 388–399. https://doi.org/10.1152/japplphysiol.00535.2017.-Isometric

Anugrah, S. M. (2023). Effect of Royal Jelly on Performance and Inflammatory Response to Muscle Damage : A Systematic Review. 13, 6–13.

Askari, M., Mozaffari, H., Darooghegi Mofrad, M., Jafari, A., Surkan, P. J., Amini, M. R., & Azadbakht, L. (2021). Effects of garlic supplementation on oxidative stress and antioxidative capacity biomarkers: A systematic review and meta-analysis of randomized controlled trials. Phytotherapy Research, 35(6), 3032–3045. https://doi.org/10.1002/ptr.7021

Aslan, Z., & Aksoy, L. (2015). Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats. International Braz J Urol, 41(5), 1008–1013. https://doi.org/10.1590/S1677-5538.IBJU.2014.0470

Ayubi, N., Kusnanik, N. W., Herawati, L., Muhammad, H. N., Komaini, A., Nashrudin Bin Naharudin, M. ., Kusuma, D. A., Kartiko, D. C., Siantoro, G., & Firmansyah, A. (2023). Curcumin: The active compound in turmeric has the potential to reduce pain intensity and increase range of motion during exercise-induced muscle damage. Retos, 49, 374–378. https://doi.org/10.47197/retos.v49.98671

Bahri, S., Adnyana, I. K., Hasan, M. F., Apriantono, T., & Juniarsyah, A. D. (2022). The Effect of Cinnamon Extract on Recovery and Performance of Weightlifting Athletes. Sport Mont, 20(2), 57–61. https://doi.org/10.26773/smj.220609

Botezan, S., Baci, G. M., Bagameri, L., Pașca, C., & Dezmirean, D. S. (2023). Current Status of the Bioactive Properties of Royal Jelly: A Comprehensive Review with a Focus on Its Anticancer, Anti-Inflammatory, and Antioxidant Effects. In Molecules (Vol. 28, Issue 3). MDPI. https://doi.org/10.3390/molecules28031510

Canals-Garzón, C., Guisado-Barrilao, R., Martínez-García, D., Chirosa-Ríos, I. J., Jerez-Mayorga, D., & Guisado-Requena, I. M. (2022). Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031803

Chen, Y. F., Wang, K., Zhang, Y. Z., Zheng, Y. F., & Hu, F. L. (2016). In Vitro Anti-Inflammatory Effects of Three Fatty Acids from Royal Jelly. Mediators of Inflammation, 2016. https://doi.org/10.1155/2016/3583684

Collazo, N., Carpena, M., Nuñez‐estevez, B., Otero, P., Simal‐gandara, J., & Prieto, M. A. (2021). Health promoting properties of bee royal jelly: Food of the queens. Nutrients, 13(2), 1–26. https://doi.org/10.3390/nu13020543

da Silva, W., Machado, Á. S., Souza, M. A., Mello-Carpes, P. B., & Carpes, F. P. (2018). Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiology and Behavior, 194(March), 77–82. https://doi.org/10.1016/j.physbeh.2018.05.006

Darwin, E., Elfi, E. F., & Dachriyanus. (2017). Effect of arginine on IL-6, IL-17 and TGF-β levels in high-fat diet-induced hypercholesterolemia rat. Journal of Young Pharmacists, 9(1), 83–86. https://doi.org/10.5530/jyp.2017.9.16

De Moura, N. R., Cury-Boaventura, M. F., Santos, V. C., Levada-Pires, A. C., Bortolon, J. R., Fiamoncini, J., Pithon-Curi, T. C., Curi, R., & Hatanaka, E. (2012). Inflammatory response and neutrophil functions in players after a futsal match. Journal of Strength and Conditioning Research, 26(9), 2507–2514. https://doi.org/10.1519/JSC.0b013e31823f29b5

Ecem Bayram, N., Çebi, N., Çelik, S., Gerçek, Y. C., Bayram, S., Tanuğur Samancı, A. E., Sağdıç, O., & Özkök, A. (2021). Turkish royal jelly: amino acid, physicochemical, antioxidant, multi-elemental, antibacterial and fingerprint profiles by analytical techniques combined with chemometrics. Journal of Apicultural Research, 60(5), 751–764. https://doi.org/10.1080/00218839.2021.1889222

Fakhri, S., Shakeryan, S., Alizadeh, A., & Shahryari, A. (2020). Effect of 6 Weeks of High Intensity Interval Training with Nano curcumin Supplement on Antioxidant Defense and Lipid Peroxidation in Overweight Girls- Clinical Trial. Iranian Journal of Diabetes and Obesity, 11(3), 173–180. https://doi.org/10.18502/ijdo.v11i3.2606

Faria, F. R., Gomes, A. C., Antunes, A., Rezende, K. R., Pimentel, G. D., Oliveira, C. L. P., Antunes, B. M., Lira, F. S., Aoki, M. S., & Mota, J. F. (2020). Effects of turmeric extract supplementation on inflammation and muscle damage after a half-marathon race: a randomized, double-blind, placebo-controlled trial. European Journal of Applied Physiology, 120(7), 1531–1540. https://doi.org/10.1007/s00421-020-04385-7

Fatmawati, F., Erizka, E., & Hidayat, R. (2019). Royal jelly (Bee product) decreases inflammatory response in wistar rats induced with ultraviolet radiation. Open Access Macedonian Journal of Medical Sciences, 7(17), 2723–2727. https://doi.org/10.3889/oamjms.2019.704

Gamonales, J. M., Rojas-Valverde, D., Muñoz-Jiménez, J., Serrano-Moreno, W., & Ibáñez, S. J. (2022). Effectiveness of Nitrate Intake on Recovery from Exercise-Related Fatigue: A Systematic Review. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912021

Harrington, R. N. (2023). Effects of branched chain amino acids, l-citrulline, and alpha-glycerylphosphorylcholine supplementation on exercise performance in trained cyclists: a randomized crossover trial. Journal of the International Society of Sports Nutrition, 20(1). https://doi.org/10.1080/15502783.2023.2214112

Hu, H., Wei, Q., Sun, Z., Zhang, X., Ma, C., Feng, M., Meng, L., Li, J., & Han, B. (2021). Development of a Freshness Assay for Royal Jelly Based on the Temperature- And Time-Dependent Changes of Antimicrobial Effectiveness and Proteome Dynamics of Royal Jelly Proteins. Journal of Agricultural and Food Chemistry, 69(36), 10731–10740. https://doi.org/10.1021/acs.jafc.1c02843

Hyldahl, R. D., & Hubal, M. J. (2014). Lengthening our perspective: Morphological, cellular, and molecular responses to eccentric exercise. In Muscle and Nerve (Vol. 49, Issue 2, pp. 155–170). https://doi.org/10.1002/mus.24077

Irandoust, K., Youzbashi, L., Taheri, M., & Saad, H. Ben. (2022). High intensity interval training and L-Arginine supplementation decrease interleukin-6 levels in adult trained males. https://www.researchgate.net/publication/366558410

Ives, S. J., Bloom, S., Matias, A., Morrow, N., Martins, N., Roh, Y., Ebenstein, D., O’Brien, G., Escudero, D., Brito, K., Glickman, L., Connelly, S., & Arciero, P. J. (2017). Effects of a combined protein and antioxidant supplement on recovery of muscle function and soreness following eccentric exercise. Journal of the International Society of Sports Nutrition, 14(1). https://doi.org/10.1186/s12970-017-0179-6

Iwasa, M., Kobayashi, Y., Mifuji-Moroka, R., Hara, N., Miyachi, H., Sugimoto, R., Tanaka, H., Fujita, N., Gabazza, E. C., & Takei, Y. (2013). Branched-Chain Amino Acid Supplementation Reduces Oxidative Stress and Prolongs Survival in Rats with Advanced Liver Cirrhosis. PLoS ONE, 8(7). https://doi.org/10.1371/journal.pone.0070309

Jones, M. R., West, D. J., Harrington, B. J., Cook, C. J., Bracken, R. M., Shearer, D. A., & Kilduff, L. P. (2014). Match play performance characteristics that predict post-match creatine kinase responses in professional rugby union players. BMC Sports Science, Medicine and Rehabilitation, 6(1). https://doi.org/10.1186/2052-1847-6-38

Jose Vazhacharickal, P. (2021). Biological action and health benefits of honey, propolis and royal jelly: An overview. The Pharma Innovation Journal, 10(7), 28–30. https://www.researchgate.net/profile/Prem-Vazhacharickal/publication/356160918_Biological_action_and_health_benefits_of_honey_propolis_and_royal_jelly_An_overview/links/618dfe3c61f0987720872003/Biological-action-and-health-benefits-of-honey-propolis-and-r

Jurjiu, B., Damian, M., Login, C., Grad, S., Chiş, A., Tămaş, M.-M., Muntean, L., Filipescu, I., Simon, S.-P., & Vulturar, R. (2021). Should Creatine Kinase be tested at baseline in athletes? Health, Sports Rehabilitation Medicine, 22(4), 236–241. https://doi.org/10.26659/pm3.2021.22.4.236

Kaniganti, U. S., & Majumdar, P. (2019). Effect of a weight lifting training session on leukocyte count and myokine (Interleukin-6) levels. Journal of Physical Education and Sport, 19(4), 2435–2440. https://doi.org/10.7752/jpes.2019.04369

Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J., & Musik, I. (2018). Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. In Oxidative Medicine and Cellular Longevity (Vol. 2018). Hindawi Limited. https://doi.org/10.1155/2018/7074209

Malkoç, M., Altay, D. U., Alver, A., Ersöz, S., Şen, T. M., Kural, B. V., & Uydu, H. A. (2018). The effects of royal jelly on the oxidant-antioxidant system in rats with N-methyl-N-nitrosourea-induced breast cancer. Turkish Journal of Biochemistry, 43(2), 176–183. https://doi.org/10.1515/tjb-2017-0140

Martí i Líndez, A. A., & Reith, W. (2021). Arginine-dependent immune responses. In Cellular and Molecular Life Sciences (Vol. 78, Issue 13, pp. 5303–5324). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00018-021-03828-4

Martinho, D. V., Nobari, H., Faria, A., Field, A., Duarte, D., & Sarmento, H. (2022). Oral Branched-Chain Amino Acids Supplementation in Athletes: A Systematic Review. In Nutrients (Vol. 14, Issue 19). MDPI. https://doi.org/10.3390/nu14194002

Moore, E., Fuller, J. T., Bellenger, C. R., Saunders, S., Halson, S. L., Broatch, J. R., & Buckley, J. D. (2023). Effects of Cold-Water Immersion Compared with Other Recovery Modalities on Athletic Performance Following Acute Strenuous Exercise in Physically Active Participants: A Systematic Review, Meta-Analysis, and Meta-Regression. Sports Medicine, 53(3), 687–705. https://doi.org/10.1007/s40279-022-01800-1

Mor, A., Acar, K., Yılmaz, A. K., & Arslanoglu, E. (2021). The effects of BCAA and creatine supplementation on anaerobic capacity and ball kicking speed in male football players. Journal of Men’s Health, 18(1), 1–9. https://doi.org/10.31083/jomh.2021.058

Mukarromah, S. B., Ali, M. A., Anggita, G. M., Lesmana, R., Rosdianto, A. M., Komarudin, Hanief, Y. N., Giang, N. T., & Park, S. H. (2022). The effect of aquarobics high intensity interval training in on interleukin-6 (IL-6) serum changes for over 8 weeks. Journal of Physical Education and Sport, 22(12), 3114–3121. https://doi.org/10.7752/jpes.2022.12394

Naderi, A., Samanipour, M. H., Sarshin, A., Forbes, S. C., Koozehchian, M. S., Franchini, E., Reale, R., Berjisian, E., de Oliveira, E. P., Miraftabi, H., Sharafshadeh, M. S., & Rezaei, S. (2021). Effects of two different doses of carbohydrate ingestion on taekwondo-related performance during a simulated tournament. Journal of the International Society of Sports Nutrition, 18(1). https://doi.org/10.1186/s12970-021-00434-4

NAZMI, S., KADIR, Y., BETÜL, C., SERDAR, B., & BEKIR, Ç. (2014). Effect of Royal Jelly Ingestion for Four Weeks on Hematological Blood Markers on Swimmers. Ovidius University Annals, Series Physical Education & Sport/Science, Movement & Health, 14(2), 196–202. http://proxy.lib.ohio-state.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=97431132&site=ehost-live

Osmond, A. D., Directo, D. J., Elam, M. L., Juache, G., Kreipke, V. C., Saralegui, D. E., Wildman, R., Wong, M., & Jo, E. (2019). The effects of leucine-enriched branched-chain amino acid supplementation on recovery after high-intensity resistance exercise. International Journal of Sports Physiology and Performance, 14(8), 1081–1088. https://doi.org/10.1123/ijspp.2018-0579

Ovchinnikov, A. N., Paoli, A., Seleznev, V. V., & Deryugina, A. V. (2022). Royal jelly plus coenzyme Q10 supplementation improves high-intensity interval exercise performance via changes in plasmatic and salivary biomarkers of oxidative stress and muscle damage in swimmers: a randomized, double-blind, placebo-controlled pilot tr. Journal of the International Society of Sports Nutrition, 19(1), 239–257. https://doi.org/10.1080/15502783.2022.2086015

Peake, J. M. (2019). Recovery after exercise: what is the current state of play? Current Opinion in Physiology, 10, 17–26. https://doi.org/10.1016/j.cophys.2019.03.007

Peake, J. M., Neubauer, X. O., Della Gatta, P. A., & Nosaka, X. K. (2017). REVIEW Recovery from Exercise Muscle damage and inflammation during recovery from exercise. J Appl Physiol, 122, 559–570. https://doi.org/10.1152/japplphysiol.00971.2016.-Unac

Philip, C., & Fischer, P. (2014). Interleukin-6 in acute exercise and training: What is the biological relevance? https://www.researchgate.net/publication/6600013

Pisoschi, A. M., Pop, A., Iordache, F., Stanca, L., Geicu, O. I., Bilteanu, L., & Serban, A. I. (2022). Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. European journal of medicinal chemistry, 232, 114175. https://doi.org/10.1016/j.ejmech.2022.114175

Silva Vasconcelos, E. da, & Fernanda Salla, R. (2018). Role of interleukin-6 and interleukin-15 in exercise. MOJ Immunology, 6(1), 11–13. https://doi.org/10.15406/moji.2018.06.00185

Talemi, M., Seyed Mojtaba Paydar Ardakani, & Behnam Roozbeh. (2021). Tribulus Terrestris may decrease muscle damage markers following a high-intensity resistance exercise: A pilot study. International Journal for Vitamin and Nutrition Research, Volume 91(Issue 5-6).

Tanabe, Y., Chino, K., Sagayama, H., Lee, H. J., Ozawa, H., Maeda, S., & Takahashi, H. (2019). Effective timing of curcumin ingestion to attenuate eccentric exercise–induced muscle soreness in men. Journal of Nutritional Science and Vitaminology, 65(1), 82–89. https://doi.org/10.3177/jnsv.65.82

Tanaka, T., Narazaki, M., & Kishimoto, T. (2014). IL-6 in inflammation, immunity, and disease. Cold Spring Harbor perspectives in biology, 6(10), a016295. https://doi.org/10.1101/cshperspect.a016295

Tasdoǧan, A. M., Vural, M., Özdal, M., & Pancar, Z. (2020). Effect of royal jelly supplementation on aerobic power output and anaerobic power output. Progress in Nutrition, 22(1), 281–287. https://doi.org/10.23751/pn.v22i1.8747

Uçar, M. (2019). The Antioxidant Activity of Water, DMSO and Methanol Extracts of Royal Jelly from Bursa Province in Turkey. Pharmaceutical Drug Regulatory Affairs Journal, 2(1). https://doi.org/10.23880/pdraj-16000110

Vandusseldorp, T. A., Escobar, K. A., Johnson, K. E., Stratton, M. T., Moriarty, T., Cole, N., McCormick, J. J., Kerksick, C. M., Vaughan, R. A., Dokladny, K., Kravitz, L., & Mermier, C. M. (2018). Effect of branched-chain amino acid supplementation on recovery following acute eccentric exercise. Nutrients, 10(10). https://doi.org/10.3390/nu10101389

Wan, J. J., Qin, Z., Wang, P. Y., Sun, Y., & Liu, X. (2017). Muscle fatigue: General understanding and treatment. In Experimental and Molecular Medicine (Vol. 49, Issue 10). Nature Publishing Group. https://doi.org/10.1038/emm.2017.194

Weis, W. A., Ripari, N., Conte, F. L., Honorio, M. da S., Sartori, A. A., Matucci, R. H., & Sforcin, J. M. (2022). An overview about apitherapy and its clinical applications. In Phytomedicine Plus (Vol. 2, Issue 2). Elsevier B.V. https://doi.org/10.1016/j.phyplu.2022.100239

Yuksel, S., & Akyol, S. (2016). The consumption of propolis and royal jelly in preventing upper respiratory tract infections and as dietary supplementation in children. Journal of Intercultural Ethnopharmacology, 5(3), 308–311. https://doi.org/10.5455/jice.20160331064836

Zhang, S., Shao, Q., Geng, H., & Su, S. (2017). The effect of royal jelly on the growth of breast cancer in mice. Oncology Letters, 14(6), 7615–7621. https://doi.org/10.3892/ol.2017.7078

Zhang, S., Shao, Q., Shen, Z., & Su, S. (2017). Immunomodulatory response of 4T1 murine breast cancer model to camellia royal jelly. Biomedical Research (India), 28(3), 1223–1230.

Downloads

Published

2024-06-01

How to Cite

Anugrah, S. M., Kusnanik, N. W. ., Wahjuni, E. S., Zubaida, I., Triprayogo, R., Dhani, D. P., Resmana, D., Ayubi, N., Sari, E., & Mulyawan, R. (2024). Investigating the Impact of Varied Dosages of Royal Jelly Consumption on Creatine Kinase and Interleukin-6 Levels Post High-Intensity Resistance Training. Retos, 55, 428–435. https://doi.org/10.47197/retos.v55.103569

Issue

Section

Original Research Article

Most read articles by the same author(s)

1 2 3 4 > >>