Electromiografía de superficie en movimientos balísticos: un análisis metodológico comparativo en atletas de taekwondo (Surface electromyography in ballistic movement: a comparative methodological analysis from taekwondo athletes)

  • Mauricio Barramuño Medina Universidad Autónoma de Chile
  • Pablo Valdés-Badilla Universidad Católica del Maule
  • Fernando Fonseca Oyarzún Universidad de La Frontera
  • Germán Gálvez-García Universidad de La Frontera
Palabras clave: deportes de combate; electromiografía; actividad muscular; procesamiento de datos, (combat sports; electromyography; muscle activity; data processing)

Resumen

Los métodos de procesamiento de señales de electromiografía de superficie (sEMG) utilizados para evaluar los deportes de combate son heterogéneos. Esta investigación tiene como objetivo comparar el pico de electromiografía (pico EMG) en atletas de taekwondo con cinco métodos de procesamiento. En segundo lugar, se compararon tanto el coeficiente de variación (CV) como el porcentaje de ruido con respecto al pico EMG (NPRP). Se consultó el registro sEMG de ocho músculos de las piernas de dieciséis atletas (12 hombres y 4 mujeres, edades 20,31+4,1). Los métodos de procesamiento fueron: a) Suavizado 1, b) Suavizado 2, c) Raíz cuadrada media (RMS) 1, d) RMS 2 y e) Descomposición en modo empírico (EMD). Los resultados indican que el pico de EMG difiere entre el suavizado vs. EMD; Suavizado 2 vs. a EMD; Suavizado 1 vs. a RMS 2; Suavizado 2 vs. a RMS 2; Suavizado 1 vs. a RMS 1; RMS 1 vs. a RMS 2; RMS 1 vs. a EMD y RMS 2 vs. a EMD. Para todos los casos p <.05 en siete de los ocho músculos estudiados. No se encontraron diferencias para el CV. El EMD NPRP fue menor que los otros métodos analizados (p <.05). En conclusión, existen diferencias entre los métodos estudiados y deben tenerse en cuenta al interpretar el pico EMG. El EMD parece ser una alternativa útil para reducir el ruido y el movimiento de artefactos.

Abstract. Surface electromyography (sEMG) signal processing methods used to assess combat sports are heterogeneous. This research aims to compare the electromyography peak (peak EMG) in taekwondo athletes with five processing methods. Secondarily, the coefficient of variation (CV) and the noise percentage regarding the peak EMG (NPRP) were compared. The sEMG record of eight leg muscles of sixteen athletes (12 male and 4 female, ages 20.31+4.1 years) was consulted. The processing methods were: a) Smoothing 1, b) Smoothing 2, c) Root mean square (RMS) 1, d) RMS 2, and e) Empirical mode decomposition (EMD). Results indicate that the peak EMG differs among Smoothing 1 vs. EMD; Smoothing 2 vs. EMD; Smoothing 1 vs. RMS 2; Smoothing 2 vs. RMS 2; Smoothing 1 vs. RMS 1; RMS 1 vs. RMS 2; RMS 1 vs. EMD, and RMS 2 vs. EMD. For all cases p<.05 in seven of the eight muscles studied. No differences were found for the CV. The EMD NPRP was lower than the other methods analyzed (p<.05). As a conclusion, there are differences among the studied methods and should be considered when interpreting the peak EMG. The EMD seems to be a useful alternative for reducing noise and artifact movement. 

Citas

Allen, R. L., & Mills, D. W. (2004). Signal analysis : time, frequency, scale, and structure. IEEE Press.

Andrade, A. O., Nasuto, S., Kyberd, P., Sweeney-reed, C. M., & Kanijn, F. R. Van. (2006). EMG signal filtering based on Empirical Mode Decomposition. 1, 44–55. https://doi.org/10.1016/j.bspc.2006.03.003

Andrade, A. O., Soares, A. B., Nasuto, S. J., & Kyberd, P. J. (2012). EMG Decomposition and Artefact Removal. 1–26. https://doi.org/http://dx.doi.org/10.5772/50819

Antworten, A. Von. (1997). Standards for reporting EMG data. Journal of Electromyography and Kinesiology, 7(2), I–II. https://doi.org/10.1016/S1050-6411(97)90001-8

Asociación Médica Mundial. (2000). Declaración de Helsinki de la AMM – Principios éticos para las investigaciones médicas en seres humanos – WMA – The World Medical Association. Asociación Médica Mundial. https://www.wma.net/es/policies-post/declaracion-de-helsinki-de-la-amm-principios-eticos-para-las-investigaciones-medicas-en-seres-humanos/

Bartlett, R. (2007). Introduction to Sports Biomechanics. Analyzing human movement patterns, 2nd edition. In Sports Biomechanics. https://doi.org/10.4324/9780203476161

Bo, K., Forsman, M., Hansson, G.-åke, & Erik, S. (2013). Assessment of time patterns of activity and rest in full-shift recordings of trapezius muscle activity – Effects of the data processing procedure. Journal of Electromyography and Kinesiology, 23(3), 540–547. https://doi.org/10.1016/j.jelekin.2012.12.004

Castro-Gatrido, N., Valderas-Maldonado, C., Herrera-Valenzuela, T., da Silva, J. F., Guzmán-Muñoz, E., Vásquez-Gómez, J., Branco, B. M., Zapata-Bastías, J., López-Fuenzalida, A., & Valdés-Badilla, P. (2020). Effects of post-activation potentiation exercises on kicking frequency, fatigue rate and jump performance in taekwondo athletes: A case study. Retos, 83, 679–683. https://doi.org/10.47197/retos.v38i38.76755

Chowdhury, R. H., Reaz, M. B. I., Alauddin, M., Mohd, B., Bakar, A. A. A., Chellappan, K., & Chang, T. G. (2013). Surface Electromyography Signal Processing and Classification Techniques. 12431–12466. https://doi.org/10.3390/s130912431

De Luca, C. J. (1997). The Use of Surface Electromyography in Biomechanics. Journal of Applied Biomechanics, 13(2), 135–163. https://doi.org/10.1123/jab.13.2.135

Hakonen, M., Piitulainen, H., & Visala, A. (2015). Biomedical Signal Processing and Control Current state of digital signal processing in myoelectric interfaces and related applications. Biomedical Signal Processing and Control, 18, 334–359. https://doi.org/10.1016/j.bspc.2015.02.009

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 10(5), 361–374. https://doi.org/10.1016/S1050-6411(00)00027-4

Herrera-Valenzuela, T., Miccono-González, G., Fazekas-Molina, M., Astorga-Rojas, G., Valdés-Badilla, P., Ojeda-Aravena, A., & Franchini, E. (2020). Relación entre el Movement change in karate position Test con el rendimiento neuromuscular en atletas de karate: Un estudio piloto (Relationship between Movement change in karate position Test and neuromuscular performance in karate athletes: A pilot stud. Retos, 2041(39), 505–508. https://doi.org/10.47197/retos.v0i39.81409

Hibbs, A. E., Thompson, K. G., French, D. N., Hodgson, D., & Spears, I. R. (2011). Peak and average rectified EMG measures: Which method of data reduction should be used for assessing core training exercises? Journal of Electromyography and Kinesiology, 21(1), 102–111. https://doi.org/10.1016/j.jelekin.2010.06.001

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193

Jemili, H., Mejri, M. A., Sioud, R., Bouhlel, E., & Amri, M. (2017). Changements de l’activité musculaire lors des frappes guiaku-zuki et kiza-mawachi-guiri de karaté après entraînement spécifique chez des athlètes d’élite. Science and Sports, 32(2), 73–81. https://doi.org/10.1016/j.scispo.2016.11.002

Kazemi, M., De Ciantis, M. G., & Rahman, A. (2013). A profile of the Youth Olympic Taekwondo Athlete. The Journal of the Canadian Chiropractic Association, 57(4), 293–300. http://www.ncbi.nlm.nih.gov/pubmed/24302776%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3845466

Konrad, P. (2006). The ABC of EMG (Issue March).

Lee, B., & McGill, S. (2017). The effect of core training on distal limb performance during ballistic strike manoeuvres. Journal of Sports Sciences, 35(18), 1768–1780. https://doi.org/10.1080/02640414.2016.1236207

Lenetsky, S., Nates, R. J., Brughelli, M., & Harris, N. K. (2015). Is effective mass in combat sports punching above its weight ? Human Movement Science, 40, 89–97. https://doi.org/10.1016/j.humov.2014.11.016

Lienhard, K., Cabasson, A., Meste, O., & Colson, S. S. (2015). Comparison of sEMG processing methods during whole-body vibration exercise. Journal of Electromyography and Kinesiology, 25(6), 833–840. https://doi.org/10.1016/j.jelekin.2015.10.005

Luca, C. J. De. (1997). EMG and biomechanics. July 1993, 1–38. https://doi.org/10.1123/jab.13.2.135

Massó, N., Rey, F., Romero, D., Gual, G., Costa, L., & Germán, A. (2010). Surface electromyography applications in the sport Surface electromyography applications in the sport. May 2016.

Merletti, R., & Parker, P. (2004). Electromyography : physiology, engineering, and noninvasive applications. IEEE Press.

Pauk, J. (2014). Different techniques for EMG signal processing. Journal of Vibroengineering, 10 (4)(May), 571–576.

Pereira, L. G., Rodriguez Torres, A. F., Lavandero, G. C., Rendón Morales, P. A., Lagla Melendres, M. E., & Rosas Mora, M. E. (2021). Assessment of the feasibility of a combined training system in the development of explosive strength of the lower limbs of taekwondocas. Retos, 2041(39), 411–420. https://doi.org/10.47197/retos.v0i39.80748

Peterson, F., Kendall, E., & Geise, P. (2005). Muscle testing and function with posture and pain (4th ed.). Lippincott, Williams and Wilkins.

Quinzi, F., Bianchetti, A., Felici, F., & Sbriccoli, P. (2018). Higher torque and muscle fi bre conduction velocity of the Biceps Brachii in karate practitioners during isokinetic contractions. Journal of Electromyography and Kinesiology, 40(April), 81–87. https://doi.org/10.1016/j.jelekin.2018.04.005

Quinzi, F., Camomilla, V., Di Mario, A., Felici, F., & Sbriccoli, P. (2016). Repeated kicking actions in karate: Effect on technical execution in elite practitioners. International Journal of Sports Physiology and Performance, 11(3), 363–369. https://doi.org/10.1123/ijspp.2015-0162

Reaz, M. B. I., & Hussain, M. S. (2006). Techniques of EMG signal analysis : detection , processing , classification and applications. 8(1), 11–35. https://doi.org/10.1251/bpo115

Renshaw, D., Bice, M. R., Cassidy, C., Eldridge, J. A., & Powell, D. W. (2010). A Comparison of Three Computer-based Methods Used to Determine EMG Signal Amplitude. International Journal of Exercise Science, 3(1), 43–48. http://www.ncbi.nlm.nih.gov/pubmed/27182326%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4738945

Rinaldi, M., Nasr, Y., Atef, G., Bini, F., Varrecchia, T., Conte, C., Chini, G., Ranavolo, A., Draicchio, F., Pierelli, F., Amin, M., Marinozzi, F., Serrao, M., Rinaldi, M., Nasr, Y., Atef, G., Bini, F., Varrecchia, T., Conte, C., … Pierelli, F. (2018). Biomechanical characterization of the Junzuki karate punch : indexes of performance performance. European Journal of Sport Science, 0(0), 1–10. https://doi.org/10.1080/17461391.2018.1455899

Ruchika, & Dhingra, S. (1999). EMG Signal filtering of thumb based on EMD & EEMD Techniques. 314–323.

Sarmet, P. V., Goethel, M. F., & Gonçalves, M. (2016). Neuromuscular performance of Bandal Chagui: Comparison of subelite and elite taekwondo athletes. Journal of Electromyography and Kinesiology, 30, 55–65. https://doi.org/10.1016/j.jelekin.2016.06.001

Savithri, C. N., & Priya, E. (2019). Statistical Analysis of EMG-Based Features for Different Hand Movements. Smart Intelligent Computing and Applications, 71–79. https://doi.org/10.1007/978-981-13-1927-3_8

Shiavi, R. (2004). Electromyography. In R. Merletti & P. Parker (Eds.), IEEE Engineering in Medicine and Biology Magazine (Vol. 25, Issue 6). John Wiley & Sons, Inc. https://doi.org/10.1002/0471678384

Simões, H., Santos, P. M., Pereira, B., & Figueiredo, A. (2020). As Artes Marciais e os Desportos de Combate e o Bullying: uma revisão sistemática (Martial Arts and Combat Sports and the Bullying: a systematic review) (Las artes marciales y deportes de combate y el acoso escolar: una revisión sistemática). Retos, 2041(39), 835–843. https://doi.org/10.47197/retos.v0i39.77412

Thibordee, S., & Prasartwuth, O. (2014). Effectiveness of roundhouse kick in elite Taekwondo athletes. Journal of Electromyography and Kinesiology, 24(3), 353–358. https://doi.org/10.1016/j.jelekin.2014.02.002

Tsai, F.-H., Chu, I., Huang, C., Liang, J., Wu, J.-H., & Wu, W. (2017). Effects of Taping on Achilles Tendon Protection and Kendo Performance. Journal of Sport Rehabilitation, 27(2), 157–164. https://doi.org/10.1123/jsr.2016-0108

Tsolis, G., & Xenos, T. (2011). Signal Denoising Using Empirical Mode Decomposition and Higher Order Statistics. International Journal of Signal …, 4(2), 91–106.

Valdes-Badilla, P., Barramuño, M., Astudillo, R., Herrera-Valenzuela, T., Guzman-Muñoz, E., Perez-Gutierrez, M., Gutierrez-García, C., & Martinez, C. (2018). Differences in the electromyography activity of a roundhouse kick between novice and advanced taekwondo athletes. Ido Movement for Culture, 18, no. 1(January), 31–38. https://doi.org/10.14589/ido.18.1.5

Vieira, P., Moreira, S., Fagundes, M., & Gonçalves, M. (2016). Neuromuscular performance of Bandal Chagui : Comparison of subelite and elite taekwondo athletes. Journal of Electromyography and Kinesiology, 30, 55–65. https://doi.org/10.1016/j.jelekin.2016.06.001

Yang, X., Xu, C., Guan, H., Yang, B., & Wang, W. (2018). Study on De-noise of Electromyographic ( EMG ) Signal. DEStech Transactions on Computer Science and Engineering Iciti, Icitia, 835–841. https://doi.org/10.12783/dtcse/iciti2018/29189

Zorzi, E., Nardello, F., Fracasso, E., Franchi, S., Clauti, A., Cesari, P., & Zamparo, P. (2015). A kinematic and metabolic analysis of the first Lu of Tai Chi in experts and beginners. 1085(July), 1082–1085.

Publicado
2022-04-01
Cómo citar
Barramuño Medina, M., Valdés-Badilla, P., Fonseca Oyarzún, F., & Gálvez-García, G. (2022). Electromiografía de superficie en movimientos balísticos: un análisis metodológico comparativo en atletas de taekwondo (Surface electromyography in ballistic movement: a comparative methodological analysis from taekwondo athletes). Retos, 44, 146-154. https://doi.org/10.47197/retos.v44i0.90174
Sección
Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas