El dolor muscular de aparición tardía inducido por contracción excéntrica afecta negativamente la actividad autonómica cardíaca en adolescentes atletas: un estudio pre-experimental (Eccentric-induced delayed-onset muscle soreness impairs cardiac autonomic activity in adolescent athletes: a pre-experimental study)
DOI:
https://doi.org/10.47197/retos.v59.106722Palabras clave:
Deportes, Dolor agudo, Sistema nervioso autónomo, Hiperalgesia mecánica, Daño muscularResumen
Objetivo: Investigar el impacto del dolor muscular de aparición tardía inducido por ejercicios excéntricos (DOMS, por sus siglas en inglés) sobre la actividad autonómica cardíaca en atletas adolescentes. Métodos: Se llevó a cabo un diseño preexperimental de un solo grupo con preprueba y postprueba en quince atletas adolescentes competitivos, y se evaluó el efecto de DOMS en la actividad autonómica cardíaca, controlando por composición corporal y los factores de ansiedad estado/rasgo. Se aplicó un protocolo de ejercicio excéntrico a los músculos flexores del codo para inducir DOMS. Luego, se comparó la variabilidad de la frecuencia cardíaca antes y dos días después de la inducción de DOMS, tanto en condiciones de reposo como durante movimientos resistidos del miembro con dolor, utilizando la prueba t para muestras pareadas. Además, se midió la composición corporal y el Inventario de Ansiedad Estado-Rasgo (STAI, por sus siglas en inglés). Resultados: El análisis reveló un efecto significativo de DOMS en la respuesta autonómica cardíaca en el dominio de tiempo en raíz cuadrada de las diferencias sucesivas (RMSSD) (MD = -5.58, IC del 95%[-9.36, -1.8], t(14) = -3.2, p = 0.007) y desviación estándar de los intervalos normales a normales (SDNN) (MD = -9.43, IC del 95%[-15.47, -3.39], t(13) = -3.4, p = 0.005), así como en los índices autonómicos del sistema nervioso simpático (SNS, por sus siglas en inglés) (MD = 0.68, IC del 95%[0.07, 1.29], t(14) = 2.4, p = 0.031) e Índice de Estrés (SI) (MD = 2.72, IC del 95%[0.67, 4.77], t(14) = 2.8, p = 0.013) en condiciones de ejercicio. Conclusiones: El DOMS modifica la actividad autonómica cardíaca en comparación con condiciones de control durante el dolor evocado mecánicamente, pero no en reposo. Este estudio destaca la importancia de considerar la presencia de DOMS cuando se utiliza la VFC en atletas adolescentes para fines de entrenamiento, clínicos o de investigación.
Palabras clave: Deportes, Dolor agudo, Sistema nervioso autónomo, Hiperalgesia mecánica, Daño muscular
Abstract. Objective: To investigate the impact of eccentric-induced delayed-onset muscle soreness (DOMS) on cardiac autonomic activity in adolescent athletes. Methods: A pre-experimental one-group pre-test/post-test design was carried out on fifteen competitive adolescent athletes, and the effect of DOMS on cardiac autonomic activity was assessed while controlling for body composition and anxious state/trait factors. An eccentric exercise protocol was applied to the elbow’s flexor muscles to induce DOMS. Then, heart rate variability was compared before and two days after DOMS induction under resting and resisted movement conditions of the painful limb, using a t-test for paired samples. The body composition and the State-Trait Anxiety Inventory (STAI) were also measured. Results: The analysis revealed a significant effect of DOMS on autonomic response in time domain measures of root mean square of successive differences (RMSSD) (MD = -5.58, 95%CI[-9.36, -1.8], t(14) = -3.2, p = 0.007) and standard deviation of normal-to-normal intervals (SDNN) (MD = -9.43, 95%CI[-15.47, -3.39], t(13) = -3.4, p = 0.005), as well as on sympathetic nervous system (SNS) autonomic indices (MD = 0.68, 95%CI[0.07, 1.29], t(14) = 2.4, p = 0.031) and Stress index (SI) (MD = 2.72, 95%CI[0.67, 4.77], t(14) = 2.8, p = 0.013) under exercise conditions. Conclusions: DOMS changes cardiac autonomic activity compared to control conditions during mechanically evoked pain but not at rest. This study highlights the importance of considering the presence of DOMS when HRV is used in adolescent athletes for training, clinical, or research purposes.
Keywords: Sports, Acute pain, Autonomic nervous system, Mechanical hyperalgesia, Muscle damage
Citas
Agten, C. A., Buck, F. M., Dyer, L., Flück, M., Pfirrmann, C. W. A., & Rosskopf, A. B. (2017). Delayed-Onset Muscle Soreness: Temporal Assessment With Quantitative MRI and Shear-Wave Ultrasound Elastography. American Journal of Roentgenology, 208(2), 402–412. https://doi.org/10.2214/AJR.16.16617
Akselrod, S., Gordon, D., Ubel, F. A., Shannon, D. C., Berger, A. C., & Cohen, R. J. (1981). Power Spectrum Analysis of Heart Rate Fluctuation: A Quantitative Probe of Beat-to-Beat Cardiovascular Control. Science, 213(4504), 220–222. https://doi.org/10.1126/science.6166045
Atisook, R., Euasobhon, P., Saengsanon, A., & Jensen, M. P. (2021). Validity and Utility of Four Pain Intensity Measures for Use in International Research. Journal of Pain Research, Volume 14, 1129–1139. https://doi.org/10.2147/JPR.S303305
Bandeira, P. M., Reis, F. J. J., Sequeira, V. C. C., Chaves, A. C. S., Fernandes, O., & Arruda-Sanchez, T. (2021). Heart rate variability in patients with low back pain: a systematic review. Scandinavian Journal of Pain, 21(3), 426–433. https://doi.org/10.1515/sjpain-2021-0006
BERNTSON, G. G., THOMAS BIGGER, J., ECKBERG, D. L., GROSSMAN, P., KAUFMANN, P. G., MALIK, M., NAGARAJA, H. N., PORGES, S. W., SAUL, J. P., STONE, P. H., & VAN DER MOLEN, M. W. (1997a). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
BERNTSON, G. G., THOMAS BIGGER, J., ECKBERG, D. L., GROSSMAN, P., KAUFMANN, P. G., MALIK, M., NAGARAJA, H. N., PORGES, S. W., SAUL, J. P., STONE, P. H., & VAN DER MOLEN, M. W. (1997b). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
Buchheit, M., Chivot, A., Parouty, J., Mercier, D., Al Haddad, H., Laursen, P. B., & Ahmaidi, S. (2010). Monitoring endurance running performance using cardiac parasympathetic function. European Journal of Applied Physiology, 108(6), 1153–1167. https://doi.org/10.1007/s00421-009-1317-x
Buchheit, M., & Gindre, C. (2006). Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. American Journal of Physiology-Heart and Circulatory Physiology, 291(1), H451–H458. https://doi.org/10.1152/ajpheart.00008.2006
Burgos Fonseca, P., Gutiérrez Sepúlveda, A., & Pino Muñoz, M. (2013). Adaptación y validación del Inventario Ansiedad Estado - Rasgo (STAI) Población Universitaria de la Provincia de Ñuble. Universidad de Bío-Bío.
Domínguez-Gavia, N. I., Candia-Luján, R., De León Fierro, L. G., Ortiz-Rodríguez, B., & Carrasco-Legleu, C. E. (2022). La hidroterapia y sus efectos sobre el dolor muscular tardío en deportistas: una revisión sistemática (Hydrote-rapy and its effects on delayed onset muscle soreness in athletes: a systematic review). Retos, 46, 733–738. https://doi.org/10.47197/retos.v46.93960
Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Eccentric Exercise: Physiological Characteristics and Acute Responses. Sports Medicine, 47(4), 663–675. https://doi.org/10.1007/s40279-016-0624-8
Esco, M., Fedewa, M., Cicone, Z., Sinelnikov, O., Sekulic, D., & Holmes, C. (2018). Field-Based Performance Tests Are Related to Body Fat Percentage and Fat-Free Mass, But Not Body Mass Index, in Youth Soccer Players. Sports, 6(4), 105. https://doi.org/10.3390/sports6040105
Fisher, A. C., Groves, D., Eleuteri, A., Mesum, P., Patterson, D., & Taggart, P. (2014). Heart rate variability at limiting stationarity: evidence of neuro-cardiac control mechanisms operating at ultra-low frequencies. Physiological Measure-ment, 35(2), 309–322. https://doi.org/10.1088/0967-3334/35/2/309
Forte, G., Troisi, G., Pazzaglia, M., Pascalis, V. De, & Casagrande, M. (2022). Heart Rate Variability and Pain: A Sys-tematic Review. Brain Sciences, 12(2), 153. https://doi.org/10.3390/brainsci12020153
Freeman, J. V., Dewey, F. E., Hadley, D. M., Myers, J., & Froelicher, V. F. (2006). Autonomic Nervous System Inter-action With the Cardiovascular System During Exercise. Progress in Cardiovascular Diseases, 48(5), 342–362. https://doi.org/10.1016/j.pcad.2005.11.003
Goldstein, D. S., Bentho, O., Park, M.-Y., & Sharabi, Y. (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by barore-flexes. Experimental Physiology, 96(12), 1255–1261. https://doi.org/10.1113/expphysiol.2010.056259
Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4
Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the Europe-an Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Circulation, 93(5), 1043–1065.
Hody, S., Croisier, J.-L., Bury, T., Rogister, B., & Leprince, P. (2019). Eccentric Muscle Contractions: Risks and Bene-fits. Frontiers in Physiology, 10. https://doi.org/10.3389/fphys.2019.00536
Hohenschurz-Schmidt, D. J., Calcagnini, G., Dipasquale, O., Jackson, J. B., Medina, S., O’Daly, O., O’Muircheartaigh, J., de Lara Rubio, A., Williams, S. C. R., McMahon, S. B., Makovac, E., & Howard, M. A. (2020). Linking Pain Sen-sation to the Autonomic Nervous System: The Role of the Anterior Cingulate and Periaqueductal Gray Resting-State Networks. Frontiers in Neuroscience, 14. https://doi.org/10.3389/fnins.2020.00147
Hotfiel, T., Freiwald, J., Hoppe, M. W., Lutter, C., Forst, R., Grim, C., Bloch, W., Hüttel, M., & Heiss, R. (2018). Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Pathogenesis and Diagnostics. Sportverletzung Sportschaden : Organ Der Gesellschaft Fur Orthopadisch-Traumatologische Sportmedizin, 32(4), 243–250. https://doi.org/10.1055/a-0753-1884
Kaufmann, S., Gronwald, T., Herold, F., & Hoos, O. (2023). Heart Rate Variability-Derived Thresholds for Exercise Intensity Prescription in Endurance Sports: A Systematic Review of Interrelations and Agreement with Different Ventilatory and Blood Lactate Thresholds. Sports Medicine - Open, 9(1), 59. https://doi.org/10.1186/s40798-023-00607-2
Kocsel, N., Galambos, A., Szőke, J., & Kökönyei, G. (2023). The moderating effect of resting heart rate variability on the relationship between pain catastrophizing and depressed mood: an empirical study. Biologia Futura. https://doi.org/10.1007/s42977-023-00190-3
Koenig, J., Jarczok, M. N., Ellis, R. J., Hillecke, T. K., & Thayer, J. F. (2014). Heart rate variability and experimentally induced pain in healthy adults: A systematic review. European Journal of Pain, 18(3), 301–314. https://doi.org/10.1002/j.1532-2149.2013.00379.x
Kox, M., Ramakers, B. P., Pompe, J. C., van der Hoeven, J. G., Hoedemaekers, C. W., & Pickkers, P. (2011). Inter-play Between the Acute Inflammatory Response and Heart Rate Variability in Healthy Human Volunteers. Shock, 36(2), 115–120. https://doi.org/10.1097/SHK.0b013e31821c2330
Kubota, Y., Chen, L. Y., Whitsel, E. A., & Folsom, A. R. (2017). Heart rate variability and lifetime risk of cardiovascu-lar disease: the Atherosclerosis Risk in Communities Study. Annals of Epidemiology, 27(10), 619-625.e2. https://doi.org/10.1016/j.annepidem.2017.08.024
Lavender, A. P., & Nosaka, K. (2008). Changes in markers of muscle damage of middle-aged and young men following eccentric exercise of the elbow flexors. Journal of Science and Medicine in Sport, 11(2), 124–131. https://doi.org/10.1016/j.jsams.2006.11.004
Malik, M. (1996). Heart Rate Variability. Annals of Noninvasive Electrocardiology, 1(2), 151–181. https://doi.org/10.1111/j.1542-474X.1996.tb00275.x
Manetti, M., Tani, A., Rosa, I., Chellini, F., Squecco, R., Idrizaj, E., Zecchi-Orlandini, S., Ibba-Manneschi, L., & Sasso-li, C. (2019). Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Scientific Reports, 9(1), 14515. https://doi.org/10.1038/s41598-019-51078-z
Manresa‐Rocamora, A., Flatt, A. A., Casanova‐Lizón, A., Ballester‐Ferrer, J. A., Sarabia, J. M., Vera‐Garcia, F. J., & Moya‐Ramón, M. (2021). Heart rate‐based indices to detect parasympathetic hyperactivity in functionally over-reached athletes. A meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 31(6), 1164–1182. https://doi.org/10.1111/sms.13932
Martínez-Rodríguez, A., Peñaranda-Moraga, M., Vicente-Martínez, M., Martínez-Moreno, M., Cuestas-Calero, B. J., Soler-Durá, J., Yáñez-Sepúlveda, R., & Muñoz-Villena, A. J. (2022). Relationship between Anthropometric Measures and Anxiety Perception in Soccer Players. International Journal of Environmental Research and Public Health, 19(15), 8898. https://doi.org/10.3390/ijerph19158898
Martinho, D. V., Field, A., Rebelo, A., Gouveia, É. R., & Sarmento, H. (2023). A Systematic Review of the Physical, Physiological, Nutritional and Anthropometric Profiles of Soccer Referees. Sports Medicine - Open, 9(1), 72. https://doi.org/10.1186/s40798-023-00610-7
Mccraty, R., & Shaffer, F. (2015). Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health Risk. Global Advances in Health and Medicine, 4(1), 46–61. https://doi.org/10.7453/gahmj.2014.073
Michael, S., Graham, K. S., & Davis, G. M. (2017). Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals—A Review. Frontiers in Physiology, 8. https://doi.org/10.3389/fphys.2017.00301
Mizumura, K., & Taguchi, T. (2024). Neurochemical mechanism of muscular pain: Insight from the study on delayed onset muscle soreness. The Journal of Physiological Sciences, 74(1), 4. https://doi.org/10.1186/s12576-023-00896-y
Mongin, D., Chabert, C., Extremera, M. G., Hue, O., Courvoisier, D. S., Carpena, P., & Galvan, P. A. B. (2022). Decrease of heart rate variability during exercise: An index of cardiorespiratory fitness. PLOS ONE, 17(9), e0273981. https://doi.org/10.1371/journal.pone.0273981
Nahon, R. L., Silva Lopes, J. S., & Monteiro de Magalhães Neto, A. (2021). Physical therapy interventions for the treat-ment of delayed onset muscle soreness (DOMS): Systematic review and meta-analysis. Physical Therapy in Sport, 52, 1–12. https://doi.org/10.1016/j.ptsp.2021.07.005
Newham, D. J., McPhail, G., Mills, K. R., & Edwards, R. H. T. (1983). Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of the Neurological Sciences, 61(1), 109–122. https://doi.org/10.1016/0022-510X(83)90058-8
Nguyen, D., Brown, L. E., Coburn, J. W., Judelson, D. A., Eurich, A. D., Khamoui, A. V, & Uribe, B. P. (2009). Ef-fect of Delayed-Onset Muscle Soreness on Elbow Flexion Strength and Rate of Velocity Development. Journal of Strength and Conditioning Research, 23(4), 1282–1286. https://doi.org/10.1519/JSC.0b013e3181970017
Nosaka, K., Newton, M., & Sacco, P. (2002). Delayed‐onset muscle soreness does not reflect the magnitude of eccen-tric exercise‐induced muscle damage. Scandinavian Journal of Medicine & Science in Sports, 12(6), 337–346. https://doi.org/10.1034/j.1600-0838.2002.10178.x
Ochi, E., Ueda, H., Tsuchiya, Y., Kouzaki, K., & Nakazato, K. (2020). Eccentric contraction–induced muscle damage in human flexor pollicis brevis is accompanied by impairment of motor nerve. Scandinavian Journal of Medicine & Sci-ence in Sports, 30(3), 462–471. https://doi.org/10.1111/sms.13589
Peçanha, T., Bartels, R., Brito, L. C., Paula-Ribeiro, M., Oliveira, R. S., & Goldberger, J. J. (2017). Methods of assess-ment of the post-exercise cardiac autonomic recovery: A methodological review. International Journal of Cardiology, 227, 795–802. https://doi.org/10.1016/j.ijcard.2016.10.057
R Core Team. (2021). R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.
Rajendra Acharya, U., Paul Joseph, K., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical & Biological Engineering & Computing, 44(12), 1031–1051. https://doi.org/10.1007/s11517-006-0119-0
Stennett, B., Anderson, M. B., Vitus, D., Ferguson, E., Dallery, J., Alappattu, M., Robinson, M., & Boissoneault, J. (2021). Sex moderates the effects of experimentally induced musculoskeletal pain on alcohol demand in healthy drinkers. Drug and Alcohol Dependence, 219, 108475. https://doi.org/10.1016/j.drugalcdep.2020.108475
Tenberg, S., Nosaka, K., & Wilke, J. (2022). The Relationship Between Acute Exercise-Induced Changes in Extramus-cular Connective Tissue Thickness and Delayed Onset Muscle Soreness in Healthy Participants: A Randomized Con-trolled Crossover Trial. Sports Medicine - Open, 8(1), 57. https://doi.org/10.1186/s40798-022-00446-7
Tiwari, R., Kumar, R., Malik, S., Raj, T., & Kumar, P. (2021). Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Current Cardiology Reviews, 17(5). https://doi.org/10.2174/1573403X16999201231203854
Tibana, R. A., Sousa, N. M. F. de, Prestes, J., Feito, Y., Ferreira, C. E., & Voltarelli, F. A. (2019). Monitoring Training Load, Well-Being, Heart Rate Variability, and Competitive Performance of a Functional-Fitness Female Athlete: A Case Study. Sports, 7(2), 35. https://doi.org/10.3390/sports7020035
Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T., & Huikuri, H. V. (1996). Quantitative beat-to-beat analy-sis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology, 271(1), H244–H252. https://doi.org/10.1152/ajpheart.1996.271.1.H244
Uzawa, H., Akiyama, K., Furuyama, H., Takeuchi, S., & Nishida, Y. (2023). Autonomic responses to aerobic and re-sistance exercise in patients with chronic musculoskeletal pain: A systematic review. PLOS ONE, 18(8), e0290061. https://doi.org/10.1371/journal.pone.0290061
Yoshida, R., Nakamura, M., & Ikegami, R. (2022). The Effect of Single Bout Treatment of Heat or Cold Intervention on Delayed Onset Muscle Soreness Induced by Eccentric Contraction. Healthcare, 10(12), 2556. https://doi.org/10.3390/healthcare10122556
Zhao, Y., Yu, H., Gong, A., Zhang, S., & Xiao, B. (2024). Heart rate variability and cardiovascular diseases: A Mendeli-an randomization study. European Journal of Clinical Investigation, 54(1). https://doi.org/10.1111/eci.14085
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess