Body composition and energy metabolism in women with excess body weight
DOI:
https://doi.org/10.23938/ASSN.0543Keywords:
Palabras clave. Obesidad. Composición corporal. Metabolismo energético. Dieta.Abstract
Background. The objective of this paper is to evaluate body composition and energy expenditure in women with excess body weight. Methods. There was a non-randomized, cross-sectional study with 40 women, [26 with excess weight (G1) and 14 eutrophic (G2)]. The following evaluations were made: dietetic, anthropometric and body composition (electrical bioimpedance), physical activity (three-dimensional accelerometer) and energy expenditure, basal and resting (indirect calorimetry). Results. The energy intake and physical activity did not differ between groups. The parameters of body composition were higher in G1, except total body water. There was a relationship between energy expenditure and body composition. The lean mass was the biggest determinant of energy expenditure. There was no difference in metabolic parameters between groups, but lower nutrient oxidation and increased metabolic efficiency in G1 was suggested. Conclusion. Excess weight was associated with body composition and energy expenditure changes that justify the accumulation of body fat.Downloads
References
1. ROSADO EL, BRESSAN J, MARTINS MF, CECON PR, MARTÍNEZ JA. Polymorphism in the PPARgamma2 and beta2-adrenergic genes and diet lipid effects on body composition, energy expenditure and eating behavior of obese women. Appetite 2007; 49: 635-643.
https://doi.org/10.1016/j.appet.2007.04.003
2. FLATT JP. Glycogen levels and obesity. Int J Obes Relat Metab Disord 1996; 20 (Suppl. 2): S1-11.
3. KIM JY, HICKNER RC, CORTRIGHT RL, DOHM GL, HOUMARD JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279: E1039-1044.
https://doi.org/10.1152/ajpendo.2000.279.5.E1039
4. HAUFE S, ENGELI S, BUDZIAREK P, UTZ W, SCHULZ-MENGER J, HERMSDORF M et al. Determinants of exercise-induced fat oxidation in obese women and men. Horm Metab Res 2010; 42: 215-221.
https://doi.org/10.1055/s-0029-1242745
5. HOROWITZ JF, KLEIN S. Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab 2000; 278: E1144-1152.
https://doi.org/10.1152/ajpendo.2000.278.6.E1144
6. NAGY TR, GORAN MI, WEINSIER RL, TOTH MJ, SCHUTZ Y, POEHLMAN ET. Determinants of basal fat oxidation in healthy caucasians. J Appl Physiol 1996; 80: 1743-1748.
https://doi.org/10.1152/jappl.1996.80.5.1743
7. MARKS BL, RIPPE JM. The importance of fat free mass maintenance in weight loss programmes. Sports Med 1996; 22: 273-281.
https://doi.org/10.2165/00007256-199622050-00001
8. STIEGLER P, CUNLIFFE A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med 2006; 36: 239-262.
https://doi.org/10.2165/00007256-200636030-00005
9. CEDDIA RB. Gordura corporal, exercício e emagrecimento. Reviews Sprint Magazine 1998; 1: 10-20.
10. ASTRUP A, BUEMANN B, WESTERN P, TOUBRO S, RABEN A, CHRISTENSEN NJ. Obesity as an adaptation to a high-fat diet: evidence from a cross-sectional study. Am J Clin Nutr 1994; 59: 350-355.
https://doi.org/10.1093/ajcn/59.2.350
11. HERMANA HMH, VOLP ACP, BRESSAN J. O perfil de macronutrientes influencia a termogênese induzida pela dieta e a ingestão calórica. ALAN 2007; 57: 33-42.
12. FERRANNINI E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988; 37: 287-301.
https://doi.org/10.1016/0026-0495(88)90110-2
13. WESTERTERP-PLANTEGA MS, WIJCKMANS-DUIJSENS NEG, VERBOEKET-VAN DE VENNE WPG, GRAAF KH, WESTSTRATE JA. Energy intake and body weight effects of six months reduced or full fat diets, as a function of dietary restraint. Int J Obes 1998; 22: 14-22.
https://doi.org/10.1038/sj.ijo.0800538
14. VALTUEÑA S, SALAS-SALVADÓ J, LORDA PG. The respiratory quotient as a prognostic factor in weight-loss rebound. Int J Obes 1997; 21: 811-817.
https://doi.org/10.1038/sj.ijo.0800480
15. CENSI L, TOTI E, PASTORE G, FERRO-LUZZI A. The basal metabolic rate and energy cost of standardized walking of short and tall men. Eur J Clin Nutr 1998; 52: 441-446
https://doi.org/10.1038/sj.ejcn.1600585
16. GORAN MI. Energy metabolism and obesity. Med Clin North Am 2000; 84: 347-362.
https://doi.org/10.1016/S0025-7125(05)70225-X
17. DEJONG AT, GALLAGHER MJ, SANDBERG KR, LILLYSTONE MA, SPRING T, FRANKLIN BA et al. Peak oxygen consumption and the minute ventilation/carbon dioxide production relation slope in morbidly obese men and women: influence of subject effort and body mass index. Prev Cardiol 2008; 11: 100-105.
https://doi.org/10.1111/j.1751-7141.2008.07591.x
18. JACOBSON P, RANKINEN T, TREMBLAY A, PÉRUSSE L, CHAGNON YC, BOUCHARD C. Resting metabolic rate and respiratory quotient: results from a genome-wide scan in the Quebec family study. Am J Clin Nutr 2006; 84: 1527-1533.
https://doi.org/10.1093/ajcn/84.6.1527
19. MARRA M, PASANISI F, MONTAGNESE C, DE FILIPPO E, DE CAPRIO C, DE MAGISTRIS L et al. BMR variability in women of different weight. Clin Nutr 2007; 26: 567-572.
https://doi.org/10.1016/j.clnu.2007.03.006
20. KATZMARZYK PT, PÉRUSSE L, TREMBLAY A, BOUCHARD C. No association between resting metabolic rate or respiratory exchange ratio and subsequent changes in body mass and fatness: 5-1/2 year follow-up of the Québec family study. Eur J Clin Nutr 2000; 54: 610-614.
https://doi.org/10.1038/sj.ejcn.1601053
21. FONTANIVE RS, DE PAULA TP, PERES WAF. Inquéritos dietéticos. En: Duarte AC, Castellani FR. Semiologia nutricional. Rio de Janeiro: Axcel Books 2002, 4; 59-78.
22. MATHEWS CE, FREEDSON PS. Field trial of a three-dimensional activity monitor: comparison with self report. Med Sci Sports Exerc 1995; 27: 1071-1078.
https://doi.org/10.1249/00005768-199507000-00017
23. World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. Technical Report Series 854. Geneva: WHO, 1995.
24. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation on Obesity. WHO Technical Report Series 894. Geneva: WHO, 1998.
25. Consenso Latino Americano de Obesidade, 1999, 117 p. Disponível no endereço eletrônico da Associação Brasileira de Estudos Sobre Obesidade, URL http://www.abeso.org.br (Acesso el 03/10/2007).
26. LUKASKI HC, JOHNSON PE, BOLONCHUK WW, LYKKEN GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810-817.
https://doi.org/10.1093/ajcn/41.4.810
27. BUSCEMI S, CAIMI G, VERGA S. Resting metabolic rate and postabsorptive substrate oxidation in morbidly obese subjects before and after massive weight loss. Int J Obes 1996; 20: 41-46.
28. RAVUSSIN E, LILLIOJA S, KNOWLER WC, CHRISTIN L, FREYMOND D, ABBOTT WG et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318: 467-472.
https://doi.org/10.1056/NEJM198802253180802
29. World Health Organization. Energy and protein requirements. Report of a Joint FAO/WHO/ONU Expert Consultation. Technical Report Series 724. Geneva: WHO, 1985.
30. DESPRÉS JP, LEMIEUX I, PRUD'HOMME D. Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 2001; 322: 716-720.
https://doi.org/10.1136/bmj.322.7288.716
31. LICHTENBELT WD, FOGELHOLM M. Increased extracellular water compartment, relative to the intracellular water compartment, after weight reduction. J Appl Physiol 1999; 87: 294-298.
https://doi.org/10.1152/jappl.1999.87.1.294
32. PIERS LS, SOARES MJ, MCCORMACK LM, O'DEA K. Is there evidence for an age-related reduction in metabolic rate? J Appl Physiol 1998; 85: 2196-2204.
https://doi.org/10.1152/jappl.1998.85.6.2196
33. WARLICH V, ANJOS LA. Aspectos históricos e metodológicos da medição e estimativa da taxa metabólica basal: uma revisão da literatura. Cadernos de Saúde Pública 2001; 17: 801-817.
https://doi.org/10.1590/S0102-311X2001000400015
34. SARTORIO A, MALAVOLTI M, AGOSTI F, MARINONE PG, CAITI O, BATTISTINI N et al. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr 2005; 59: 155-160.
https://doi.org/10.1038/sj.ejcn.1602049
35. ROTH J, QIANG X, MARBÁN SL, REDELT H, LOWELL BC. The obesity pandemic: Where have we been and are we going? Obes Res 2004; 12 (Supl.): 88-101.
https://doi.org/10.1038/oby.2004.273
36. CURI R, LAGRANHA CJ, G JR JR, PITHON-CURI TC, LANCHA JR AH, PELLEGRINOTTI IL et al. Ciclo de krebs como fator limitante na utilização de ácidos graxos durante o exercício aeróbico. Arq Bras Endocrinol Metab 2003; 47: 135-143.
https://doi.org/10.1590/S0004-27302003000200005
37. PRENTICE AM, RAYCO-SOLON P, MOORE SE. Insights from the developing world: thrifty genotypes and thrifty phenotypes. Proc Nutr Soc 2005; 64: 153-161.
https://doi.org/10.1079/PNS2005421
38. MOURÃO DM, MONTEIRO JBR, HERMSDORFF HHM, TEIXEIRA MCL Alimentos modificados e suas implicações no metabolismo energético. Rev Nutr 2005; 18: 19-28.
https://doi.org/10.1590/S1415-52732005000100002
39. DE JONG AT, GALLAGHER MJ, SANDBERG KR, LILLYSTONE MA, SPRING T, FRANKLIN BA et al. Peak oygen consumption and the minute ventilation/carbon dioxide production relation slope in morbidly obese men and women: Influence of subject effort and body mass index. Prev Cardiol 2008; 11: 100-105.
https://doi.org/10.1111/j.1751-7141.2008.07591.x
40. FLATT JP. Carbohydrate-fat interactions and obesity examined by a two-compartment computer model. Obes Res 2004; 12: 2013-2022.
https://doi.org/10.1038/oby.2004.252
41. MARRA M, SCALFI L, COVINO A, ESPOSITO-DEL PUENTE A, CONTALDO F. Fasting respiratory quotient as a predictor of weight changes in non obese women. Int J Obes 1998; 22: 601-603.
https://doi.org/10.1038/sj.ijo.0800612
42. MARTÍNEZ JA, MORENO MJ, MARQUÉS-LOPES I, MARTÍ A. Causas de obesidad. An Sist Sanit Navar 2002; 25 (Supl.1): 17-27.
https://doi.org/10.23938/ASSN.0811
43. RAVUSSIN E, BURNAND B, SCHUTZ Y, JÉQUIER E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am J Clin Nutr 1982; 35: 566-573.
https://doi.org/10.1093/ajcn/35.3.566
44. WALEWSKI JL, GE F, GAGNER M, INABNET WB, POMP A, BRANCH AD et al. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg 2010; 20: 93-107.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
La revista Anales del Sistema Sanitario de Navarra es publicada por el Departamento de Salud del Gobierno de Navarra (España), quien conserva los derechos patrimoniales (copyright ) sobre el artículo publicado y favorece y permite la difusión del mismo bajo licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (CC BY-SA 4.0). Esta licencia permite copiar, usar, difundir, transmitir y exponer públicamente el artículo, siempre que siempre que se cite la autoría y la publicación inicial en Anales del Sistema Sanitario de Navarra, y se distinga la existencia de esta licencia de uso.


