Impacto de la composición corporal y del estado psicológico en las funciones ejecutivas de personas con obesidad
DOI:
https://doi.org/10.23938/ASSN.1113Palabras clave:
Antropometría, Cognición, Neuropsicología, Obesidad. Salud MentalResumen
Fundamento. El objetivo es examinar la relación entre variables antropométricas y psicológicas con las funciones ejecutivas en personas con obesidad.
Método. Se reclutaron personas adultas con obesidad en Alicante (España). Se realizó una entrevista para recoger los datos sociodemográficos (sexo, edad, nivel de estudios, estado civil y situación laboral), así como una evaluación antropométrica en la que se midió el peso, el índice de masa corporal (IMC), la grasa visceral, la masa grasa (MG) y la masa muscular (MM). La evaluación psicológica se realizó mediante el DASS-21 y la cognitiva de las funciones ejecutivas mediante el M-WCST (flexibilidad cognitiva), WAIS-IV (memoria de trabajo), TMTA (velocidad de procesamiento) y TMTB (control inhibitorio).
Resultados. La muestra estuvo compuesta por 48 personas, 52% mujeres, y media de edad 47,58 años, más frecuentemente con estudios secundarios, casadas y empleadas. Las mujeres tuvieron mayor peso, IMC y MG (% y kg). Los modelos de regresión lineal múltiple mostraron influencias significativas de las variables antropométricas peso, IMC, grasa visceral, MG y MM en el rendimiento de la memoria de trabajo, la velocidad de procesamiento y el control inhibitorio, así como de la ansiedad en la flexibilidad cognitiva y la memoria de trabajo, y de la depresión en el control inhibitorio.
Conclusiones. Las variables antropométricas peso, IMC, grasa visceral, MG y MM influyeron en el rendimiento de la memoria de trabajo, velocidad de procesamiento y control inhibitorio, mientras que la ansiedad influyó en la flexibilidad cognitiva y la memoria de trabajo, y la depresión en el control inhibitorio.
Descargas
Citas
Global Strategy on Diet, Physical Activity and Health. 2004 https://www.who.int/publications/i/item/9241592222
The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017 6; 377(1): 13–27. https://doi.org/10.1056/NEJMoa1614362
World Obesity Day. World Obesity Atlas Report. 2023 https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_2023_Report.pdf
Instituto Nacional de Estadística. Determinantes de salud: sobrepeso, consumo de fruta y verdura, tipo de lactancia, actividad física. 2024. https://www.ine.es/ss/Satellite?L=es_ES&c=INESeccion_C&cid=1259926457058&p=%5C&pagename=ProductosYServicios%2FPYSLayout
BUCKELL J, MEI XW, CLARKE P, AVEYARD P, JEBB SA. Weight loss interventions on health‐related quality of life in those with moderate to severe obesity: Findings from an individual patient data meta‐analysis of randomized trials. Obes Rev 2021; 22(11): e13317. https://doi.org/10.1111/obr.13317
SHAI I, JIANG R, MANSON JE, STAMPFER MJ, WILLETT WC, COLDITZ GA et al. Ethnicity, obesity, and risk of type 2 diabetes in women. Diabetes Care 2006; 29(7): 1585–1590. https://doi.org/10.2337/dc06-0057
The Emerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet 2011; 377(9771): 1085–1095. https://doi.org/10.1016/S0140-6736(11)60105-0
LAUBY-SECRETAN B, SCOCCIANTI C, LOOMIS D, GROSSE Y, BIANCHINI F, STRAIF K. Body fatness and cancer - Viewpoint of the IARC Working Group. N Engl J Med 2016; 375(8): 794–798. https://doi.org/10.1056/NEJMsr1606602
QUINTERO J, FÉLIX MP, BANZO-ARGUIS C, MARTÍNEZ R, BARBUDO E, SILVERIA B et al. Psicopatología en el paciente con obesidad. Salud Ment 2016; 39(3): 123–130. https://doi.org/10.17711/SM.0185-3325.2016.010
SCOTT KM, BRUFFAERTS R, SIMON GE, ALONSO J, ANGERMEYER M, DE GIROLAMO G et al. Obesity and mental disorders in the general population: Results from the world mental health surveys. Int J Obes 2008; 32(1): 192–200. https://doi.org/10.1038/sj.ijo.0803701
ABIRI B, HOSSEINPANAH F, BANIHASHEM S, MADINEHZAD SA, VALIZADEH M. Mental health and quality of life in different obesity phenotypes: A systematic review. Health Qual Life Outcomes 2022; 20(1): 63. https://doi.org/10.1186/s12955-022-01974-2
MEHRABI F, AMIRI P, CHERAGHI L, KHERADMAND A, HOSSEINPANAH F, AZIZI F. Emotional states of different obesity phenotypes: A sex-specific study in a west-Asian population. BMC Psychiatry 2021; 21(1): 124. https://doi.org/10.1186/s12888-021-03131-3
ABOU-ABBAS L, SALAMEH P, NASSER W, NASSER Z, GODIN I. Obesity and symptoms of depression among adults in selected countries of the Middle East: A systematic review and meta-analysis. Clin Obes 2015; 5(1): 2–11. https://doi.org/10.1111/cob.12082
SUTARIA S, DEVAKUMAR D, YASUDA SS, DAS S, SAXENA S. Is obesity associated with depression in children? Systematic review and meta-analysis. Arch Dis Child 2019; 104(1): 64–74. https://doi.org/10.1136/archdischild-2017-314608
GARIEPY G, NITKA D, SCHMITZ N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes 2010; 34(3): 407–419. https://doi.org/10.1038/ijo.2009.252
BURKE NL, STORCH EA. A meta-analysis of weight status and anxiety in children and adolescents. J Dev Behav Pediatr 2015; 36(3): 133–145. https://doi.org/10.1097/DBP.0000000000000143
BLAINE B. Does depression cause obesity? A meta-analysis of longitudinal studies of depression and weight control. J Health Psychol 2008; 13(8): 1190–1197. https://doi.org/10.1177/1359105308095977
XU WL, ATTI AR, GATZ M, PEDERSEN NL, JOHANSSON B, FRATIGLIONI L. Midlife overweight and obesity increase late-life dementia risk: A population-based twin study. Neurology 2011; 76(18): 1568–1574. https://doi.org/10.1212/WNL.0b013e3182190d09
GUNSTAD J, PAUL RH, COHEN RA, TATE DF, SPITZNAGEL MB, GORDON E. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry 2007; 48(1): 57–61. https://doi.org/10.1016/j.comppsych.2006.05.001
GUNSTAD J, PAUL RH, COHEN RA, TATE DF, GORDOn E. Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight Disord 2006; 11(1): e15–e19. https://doi.org/10.1007/BF03327747
CHEKE LG, BONNICI HM, CLAYTON NS, SIMONS JS. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain. Neuropsychologia 2017; 96: 137–149. https://doi.org/10.1016/j.neuropsychologia.2017.01.013
COURNOT M, MARQUIÉ JC, ANSIAU D, MARTINAUD C, FONDS H, FERRIÈRES J et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology 2006; 67(7): 1208–1214. https://doi.org/10.1212/01.wnl.0000238082.13860.50
FERGENBAUM JH, BRUCE S, LOU W, HANLEY AJG, GREENWOOD C, YOUNG TK. Obesity and lowered cognitive performance in a Canadian first nations population. Obesity 2009; 17(10) :1957–1963. https://doi.org/10.1038/oby.2009.161
FAGUNDO AB, DE LA TORRE R, JIMÉNEZ-MURCIA S, AGÜERA Z, GRANERO R, TÁRREGA S et al. Executive functions profile in extreme eating/weight conditions: From anorexia nervosa to obesity. PLoS One 2012; 7(8): e43382. https://doi.org/10.1371/journal.pone.0043382
LEZAK MD. The problem of assessing executive functions. Int J Psychol 1982; 17(1–4): 281–297. https://doi.org/10.1080/00207598208247445
DOHLE S, DIEL K, HOFMANN W. Executive functions and the self-regulation of eating behavior: A review. Appetite 2018; 124: 4–9. https://doi.org/10.1016/j.appet.2017.05.041
YANG Y, SHIELDS GS, GUO C, LIU Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci Biobehav Rev 2018; 84: 225–244. https://doi.org/10.1016/j.neubiorev.2017.11.020
RUIZ FJ, GARCÍA MARTÍN MB, SUÁREZ FALCÓN JC, ODRIOZOLA GONZÁLEZ P. The Hierarchical Factor Structure of the Spanish Version of Depression Anxiety and Stress Scale -21. Int J Psycol Psycol Ther 2017; 17(1): 97–105. https://dialnet.unirioja.es/descarga/articulo/5823618.pdf
CRISTOFORI I, COHEN-ZIMERMAN S, GRAFMAN J. Executive functions. Handb Clin Neurol 2019; 163: 197–219. https://doi.org/10.1016/B978-0-12-804281-6.00011-2
DEL PINO R, PEÑA J, IBARRETXE-BILBAO N, SCHRETLEN DJ, OJEDA N. Modified Wisconsin Card Sorting Test: standardization and norms of the test for a population sample in Spain. Rev Neurol 2016; 62(5): 193–202. https://doi.org/10.33588/rn.6205.2015274
SCHRETLEN DJ. Test de Clasificación de Tarjetas de Wisconsin - Modificado. Adaptación española por Ojeda del Pozo N, Peña Lasa J, Ibarretxe-Bilbao N y del Pino R. Madrid: TEA Ediciones, 2019.
SUNG CM, LEE TY, CHU H, LIU D, LIN HC, PIEN LC et al. Efficacy of multi-domain cognitive function training on cognitive function, working memory, attention, and coordination in older adults with mild cognitive impairment and mild dementia: A one-year prospective randomised controlled trial. J Glob Health. 2023; 13: 04069. https://doi.org/10.7189/jogh.13.04069
WECHSLER D. Escala de inteligencia de Wechsler para adultos-IV (WAIS-IV). Manual técnico e interpretativo. Adaptación española. Pearson / PsychCorp, 2008.
TAMAYO F, CASALS-COLL M, SÁNCHEZ-BENAVIDES G, QUINTANA M, MANERO RM, ROGNONI T et al. Estudios normativos españoles en población adulta joven (Proyecto NEURONORMA jóvenes): Normas para las pruebas Span Verbal, Span Visuoespacial, Letter-Number Sequencing, Trail Making Test y Symbol Digit Modalities Test. Neurología 2012; 27(6): 319–329. https://doi.org/10.1016/j.nrl.2011.12.020
LA MARRA M, ILARDI CR, VILLANO I, CAROSELLA M, STAIANO M, IAVARONE A et al. Functional relationship between inhibitory control, cognitive flexibility, psychomotor speed and obesity. Brain Sci 2022; 12(8): 1080. https://doi.org/10.3390/brainsci12081080
REITAN RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 1958; 8(3): 271–276. https://doi.org/10.2466/pms.1958.8.3.271
LUIS-RUIZ S, SÁNCHEZ-CASTAÑEDA C, GAROLERA M, MISERACHS-GONZÁLEZ S, RAMON-KRAUEL M, LERIN C et al. Influence of executive function training on BMI, food choice, and cognition in children with obesity: Results from the TOuCH study. Brain Sci 2023; 13(2): 346. https://doi.org/10.3390/brainsci13020346
COHEN J. Statistical power analysis for the behavioral sciences (2nd Ed.). USA: Lawrence Erlbaum Associates, 1988.
ROSENTHAL R. (1991). Meta-analytic procedures for social research (Revised edition). Newbury park, CA: Sage Publications, 1991.
COHEN J. A power primer. Psychol Bull 1992; 112(1): 155–159. https://doi.org/10.1037/0033-2909.112.1.155
SCHORR M, DICHTEL LE, GERWECK AV, VALERA RD, TORRIANI M, MILLER KK, BREDELLA MA. Sex differences in body composition and association with cardiometabolic risk. Biol Sex Differ. 2018 27; 9(1): 28. https://doi.org/10.1186/s13293-018-0189-3
TAO B, TIAN P, HAO Z, QI Z, ZHANG J, LIU J et al. Bariatric surgery improves cognition function in the patients with obesity: A meta-analysis. Obes Surg 2024; 34(3): 1004–1017. https://doi.org/10.1007/s11695-024-07086-8
BOURASSA K, SBARRA DA. Body mass and cognitive decline are indirectly associated via inflammation among aging adults. Brain Behav Immun 2017; 60: 63–70. https://doi.org/10.1016/j.bbi.2016.09.023
TROMPET S, DE CRAEN AJM, SLAGBOOM P, SHEPHERD J, BLAUW GJ, MURPHY MB et al. Genetic variation in the interleukin-1 -converting enzyme associates with cognitive function. The PROSPER study. Brain 2008; 131(4): 1069–1077. https://doi.org/10.1093/brain/awn023
GRIGOLEIT JS, KULLMANN JS, WOLF OT, HAMMES F, WEGNER A, JABLONOWSKI S et al. Dose-dependent effects of endotoxin on neurobehavioral functions in humans. Combs C, editor. PLoS One. 2011; 6(12): e28330. https://doi.org/10.1371/journal.pone.0028330
SALA-LLONCH R, IDLAND AV, BORZA T, WATNE LO, WYLLER TB, BRÆKHUS A et al. Inflammation, amyloid, and atrophy in the aging brain: Relationships with longitudinal changes in cognition. J Alzheimers Dis 2017; 58(3): 829–840. https://doi.org/10.3233/JAD-161146
JÓDAR-VICENTE M. Funciones cognitivas del lóbulo frontal. Rev Neurol 2004; 39(02): 178. https://doi.org/10.33588/rn.3902.2004254
WHITELOCK V, NOUWEN A, VAN DEN AKKER O, HIGGS S. The role of working memory sub-components in food choice and dieting success. Appetite 2018; 124: 24–32. https://doi.org/10.1016/j.appet.2017.05.043
GEARHARDT AN, YOKUM S, STICE E, HARRIS JL, BROWNELL KD. Relation of obesity to neural activation in response to food commercials. Soc Cogn Affect Neurosci 2014; 9(7): 932–938. https://doi.org/10.1093/scan/nst059
KURTH F, LEVITT JG, PHILLIPS OR, LUDERS E, WOODS RP, MAZZIOTTA JC et al. Relationships between gray matter, body mass index, and waist circumference in healthy adults. Hum Brain Mapp 2013; 34(7): 1737–1746. https://doi.org/10.1002/hbm.22021
BROOKS SJ, BENEDICT C, BURGOS J, KEMPTON MJ, KULLBERG J, NORDENSKJÖLD R et al. Late-life obesity is associated with smaller global and regional gray matter volumes: a voxel-based morphometric study. Int J Obes 2013; 37(2): 230–236. https://doi.org/10.1038/ijo.2012.13
HENDRICK OM, LUO X, ZHANG S, LI CR. Saliency processing and obesity: A preliminary imaging study of the stop signal task. Obesity 2012; 20(9): 1796–1802. https://doi.org/10.1038/oby.2011.180
KARLSSON HK, TUULARI JJ, HIRVONEN J, LEPOMÄKI V, PARKKOLA R, HILTUNEN J et al. Obesity is associated with white matter atrophy: A combined diffusion tensor imaging and voxel‐based morphometric study. Obesity 2013; 21(12): 2530–2537. https://doi.org/10.1002/oby.20386
TUULARI JJ, KARLSSON HK, ANTIKAINEN O, HIRVONEN J, PHAM T, SALMINEN P et al. Bariatric surgery induces white and grey matter density recovery in the morbidly obese: A voxel‐based morphometric study. Hum Brain Mapp 2016; 37(11): 3745–3756. https://doi.org/10.1002/hbm.23272
HIGGS S. Cognitive processing of food rewards. Appetite 2016;104:10–17. https://doi.org/10.1016/j.appet.2015.10.003
WANG DXM, YAO J, ZIREK Y, REIJNIERSE EM, MAIER AB. Muscle mass, strength, and physical performance predicting activities of daily living: a meta‐analysis. J Cachexia Sarcopenia Muscle 2020; 11(1): 3–25. https://doi.org/10.1002/jcsm.12502
YANG Y, XIAO M, LENG L, JIANG S, FENG L, PAN G et al. A systematic review and meta‐analysis of the prevalence and correlation of mild cognitive impairment in sarcopenia. J Cachexia Sarcopenia Muscle 2023; 14(1): 45–56. https://doi.org/10.1002/jcsm.13143
TOMÉ-FERNÁNDEZ M, SÁNCHEZ-SANSEGUNDO M, BERBEGAL-BERNABEU M, ZARAGOZA-MARTÍ A, TUELLS J, HURTADO-SÁNCHEZ JA. Understanding the relationship between quality of life, anthropometric measures and mental health in individuals with obesity. J Public Health 2024; 46(3): e460–467. https://doi.org/10.1093/pubmed/fdae097
KIM Y, STERN Y, SEO SW, NA DL, JANG J, JANG H et al. Factors associated with cognitive reserve according to education level. Alzheimers Dement 2024; 20(11): 7686–7697. https://doi.org/10.1002/alz.14236
PENG TC, CHEN WL, WU LW, CHANG YW, KAO TW. Sarcopenia and cognitive impairment: A systematic review and meta-analysis. Clin Nutr 2020; 39(9): 2695–2701. https://doi.org/10.1016/j.clnu.2019.12.014
YANG MH, KIM EH, CHOI ES, KO H. Comparison of normative percentiles of brain volume obtained from neuroquant vs. deepBrain in the Korean population: correlation with cranial shape. J Korean Soc Radiol 2023; 84(5): 1080. https://doi.org/10.3348/jksr.2023.0006
ALEMAN H, ESPARZA J, RAMIREZ FA, ASTIAZARAN H, PAYETTE H. Longitudinal evidence on the association between interleukin-6 and C-reactive protein with the loss of total appendicular skeletal muscle in free-living older men and women. Age Ageing 2011; 40(4): 469–475. https://doi.org/10.1093/ageing/afr040
SCHAAP LA, PLUIJM SMF, DEEG DJH, VISSER M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med 2006; 119(6): 526.e9-526.e17. https://doi.org/10.1016/j.amjmed.2005.10.049
KOHARA K, OKADA Y, OCHI M, OHARA M, NAGAI T, TABARA Y et al. Muscle mass decline, arterial stiffness, white matter hyperintensity, and cognitive impairment: Japan Shimanami Health Promoting Program study. J Cachexia Sarcopenia Muscle 2017; 8(4): 557–566. https://doi.org/10.1002/jcsm.12195
BURNS JM, JOHNSON DK, WATTS A, Swerdlow RH, Brooks WM. Reduced lean mass in early alzheimer disease and its association with brain atrophy. Arch Neurol 2010; 67(4): 428-433. https://doi.org/10.1001/archneurol.2010.38
JAMES TA, WEISS-COWIE S, HOPTON Z, VERHAEGHEN P, DOTSON VM, DUARTE A. Depression and episodic memory across the adult lifespan: A meta-analytic review. Psychol Bull 2021; 147(11): 1184–1214. https://doi.org/10.1037/bul0000344
NIKOLIN S, TAN YY, SCHWAAB A, MOFFA A, LOO CK, MARTIN D. An investigation of working memory deficits in depression using the n-back task: A systematic review and meta-analysis. J Affect Disord 2021; 284: 1–8. https://doi.org/10.1016/j.jad.2021.01.084
MARCHETTI I, EVERAERT J, DAINER-BEST J, LOEYS T, BEEVERS CG, KOSTER EHW. Specificity and overlap of attention and memory biases in depression. J Affect Disord 2018; 225: 404–412. https://doi.org/10.1016/j.jad.2017.08.037
MARTIN K, MCLEOD E, PÉRIARD J, RATTRAY B, KEEGAN R, PYNE DB. The impact of environmental stress on cognitive performance: A systematic review. Hum Factors J Hum Factors Ergon Soc 2019; 61(8): 1205–1246. https://doi.org/10.1177/0018720819839817
AMIRI S, BEHNEZHAD S. Obesity and anxiety symptoms: a systematic review and meta-analysis. Neuropsychiatrie 2019; 33(2): 72–89. https://doi.org/10.1007/s40211-019-0302-9
CROCKER LD, HELLER W, WARREN SL, O’HARE AJ, INFANTOLINO ZP, MILLER GA. Relationships among cognition, emotion, and motivation: implications for intervention and neuroplasticity in psychopathology. Front Hum Neurosci 2013; 7: 261. https://doi.org/10.3389/fnhum.2013.00261
SNYDER HR, KAISER RH, WARREN SL, HELLER W. Obsessive-compulsive disorder is associated with broad impairments in executive function: A meta-analysis. Clin Psychol Sci 2015; 3(2): 301–330. https://doi.org/10.1177/2167702614534210
WARREN SL, CROCKER LD, SPIELBERG JM, ENGELS AS, BANICH MT, SUTTON BP et al. Cortical organization of inhibition-related functions and modulation by psychopathology. Front Hum Neurosci 2013; 7: 271. https://doi.org/10.3389/fnhum.2013.00271
SHARP PB, MILLER GA, HELLER W. Transdiagnostic dimensions of anxiety: Neural mechanisms, executive functions, and new directions. Int J Psychophysiol 2015; 98(2): 365–377. https://doi.org/10.1016/j.ijpsycho.2015.07.001
Publicado
Cómo citar
Número
Sección
Licencia

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
La revista Anales del Sistema Sanitario de Navarra es publicada por el Departamento de Salud del Gobierno de Navarra (España), quien conserva los derechos patrimoniales (copyright ) sobre el artículo publicado y favorece y permite la difusión del mismo bajo licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (CC BY-SA 4.0). Esta licencia permite copiar, usar, difundir, transmitir y exponer públicamente el artículo, siempre que siempre que se cite la autoría y la publicación inicial en Anales del Sistema Sanitario de Navarra, y se distinga la existencia de esta licencia de uso.
Datos de los fondos
-
Ministerio de Ciencia, Innovación y Universidades
Números de la subvención PID2023-149562OB-I00