O exercício físico induz aumento da translocação dos transportadores de glicose tipo 4 (GLUT4): uma revisão sistemática

Autores

DOI:

https://doi.org/10.47197/retos.v59.104078

Palavras-chave:

Physical training, GLUT4, Glucose, Insulin

Resumo

O objetivo deste estudo é destacar o impacto do exercício no aumento da translocação do GLUT4 nas membranas celulares. Este estudo pesquisa muitas bases de dados de periódicos, incluindo Embase, Pubmed, Web of Science e Scopus, como parte de uma metodologia de revisão sistemática. Os critérios de inclusão para este estudo foram publicações publicadas nos últimos cinco anos e publicações que mencionassem exercício físico, GLUT4 e captação de glicose. Os critérios de exclusão do estudo foram publicações publicadas em periódicos não credenciados. Foram encontrados 508 artigos nas bases de dados Scopus, Web of Science Pubmed e Embase. Para esta revisão sistemática, foram escolhidos e examinados um total de 10 artigos que atendiam aos critérios de inclusão. Este estudo atendeu às diretrizes Preferred Reporting Items Assessment for Systematic Reviews and Meta-Analyses (PRISMA) para operações padrão. O resultado deste estudo de análise abrangente relata que há um aumento e aceleração da translocação do GLUT4 durante o exercício físico. Isto tem o efeito de aumentar a absorção de glicose no sangue, aumentando assim a necessidade de glicose no sangue. Recomendamos que o exercício físico seja uma medida preventiva para cada indivíduo em termos de aumento da captação de glicose no sangue, o que é útil para manter os níveis de glicose no sangue equilibrados e manter a saúde geral do corpo.

Palavras-chave: Treinamento físico; GLUT4; Glicose; Insulina

Referências

Al-Rawaf, H. A., Gabr, S. A., Iqbal, A., & Alghadir, A. H. (2023). High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. Medicina (Lithuania), 59(7). https://doi.org/10.3390/medicina59071320

Ambelu, T., & Teferi, G. (2023). The impact of exercise modalities on blood glucose, blood pressure and body composition in patients with type 2 diabetes mellitus. BMC Sports Science, Medicine and Rehabilitation, 15(1), 1–11. https://doi.org/10.1186/s13102-023-00762-9

Asfaw, M. S., & Dagne, W. K. (2022). Physical activity can improve diabetes patients’ glucose control; A systematic review and meta-analysis. Heliyon, 8(12), e12267. https://doi.org/10.1016/j.heliyon.2022.e12267

Barrett, M. R., & Davis, M. S. (2023). Conditioning-induced expression of novel glucose transporters in canine skeletal muscle homogenate. PLoS ONE, 18(5 MAY), 1–11. https://doi.org/10.1371/journal.pone.0285424

Caminiti, G., Iellamo, F., Mancuso, A., Cerrito, A., Montano, M., Manzi, V., & Volterrani, M. (2021). Effects of 12 weeks of aerobic versus combined aerobic plus resistance exercise training on short-term blood pressure variability in patients with hypertension. Journal of Applied Physiology, 130(4), 1085–1092. https://doi.org/10.1152/japplphysiol.00910.2020

Carrillo, E. D., Hernández, D. I., Clara, M. V., Lezama, I., García, M. C., & Sánchez, J. A. (2023). Exercise increases MEF2A abundance in rat cardiac muscle by downregulating microRNA-223-5p. Scientific Reports, 13(1), 1–9. https://doi.org/10.1038/s41598-023-41696-z

Chen, M., Zhu, J. Y., Mu, W. J., Luo, H. Y., Li, Y., Li, S., Yan, L. J., Li, R. Y., & Guo, L. (2023). Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice. Nature Communications, 14(1), 1–19. https://doi.org/10.1038/s41467-023-44242-7

Cho, S. C., & Shaw, S. Y. (2024). Tea seed saponin‑reduced extract ameliorates palmitic acid‑induced insulin resistance in HepG2 cells. Molecular Medicine Reports, 29(2), 1–11. https://doi.org/10.3892/mmr.2023.13149

Dlamini, M., & Khathi, A. (2023). Prediabetes-Associated Changes in Skeletal Muscle Function and Their Possible Links with Diabetes: A Literature Review. International Journal of Molecular Sciences, 25(1), 469. https://doi.org/10.3390/ijms25010469

Dunn, D. M., & Munger, J. (2020). Interplay Between Calcium and AMPK Signaling in Human Cytomegalovirus Infection. Frontiers in Cellular and Infection Microbiology, 10(July), 1–14. https://doi.org/10.3389/fcimb.2020.00384

Espelage, L., Al-Hasani, H., & Chadt, A. (2020). RabGAPs in skeletal muscle function and exercise. Journal of Molecular Endocrinology, 64(1), R1–R19. https://doi.org/10.1530/JME-19-0143

Flores-Opazo, M., McGee, S. L., & Hargreaves, M. (2020). Exercise and GLUT4. Exercise and Sport Sciences Reviews, 48(3), 110–118. https://doi.org/10.1249/JES.0000000000000224

Gejl, K. D., Andersson, E. P., Nielsen, J., Holmberg, H. C., & Ørtenblad, N. (2020). Effects of Acute Exercise and Training on the Sarcoplasmic Reticulum Ca2+ Release and Uptake Rates in Highly Trained Endurance Athletes. Frontiers in Physiology, 11(July), 1–11. https://doi.org/10.3389/fphys.2020.00810

Gorgey, A. S., Graham, Z. A., Chen, Q., Rivers, J., Adler, R. A., Lesnefsky, E. J., & Cardozo, C. P. (2020). Sixteen weeks of testosterone with or without evoked resistance training on protein expression, fiber hypertrophy and mitochondrial health after spinal cord injury. Journal of Applied Physiology, 128(6), 1487–1496. https://doi.org/10.1152/JAPPLPHYSIOL.00865.2019

Holman, G. D. (2020). Structure, function and regulation of mammalian glucose transporters of the SLC2 family. Pflugers Archiv European Journal of Physiology, 472(9), 1155–1175. https://doi.org/10.1007/s00424-020-02411-3

Kartinah, N. T., Rusli, H., Ilyas, E. I. I., Andraini, T., & Paramita, N. (2024). High-intensity interval training increases AMPK and GLUT4 expressions via FGF21 in skeletal muscles of diabetic rats. 7(1), 136–146.

Kido, K., Eskesen, N. O., Henriksen, N. S., Onslev, J., Kristensen, J. M., Larsen, M. R., Hingst, J. R., Knudsen, J. R., Birk, J. B., Andersen, N. R., Jensen, T. E., Pehmoller, C., Wojtaszewski, J. F. P., & Kjøbsted, R. (2023). AMPKγ3 Controls Muscle Glucose Uptake in Recovery From Exercise to Recapture Energy Stores. Diabetes, 72(10), 1397–1408. https://doi.org/10.2337/db23-0358

Klimczak, S., & Śliwińska, A. (2024). Epigenetic regulation of inflammation in insulin resistance. Seminars in Cell and Developmental Biology, 154(September 2022), 185–192. https://doi.org/10.1016/j.semcdb.2022.09.004

Klip, A., McGraw, T. E., & James, D. E. (2019). Thirty sweet years of GLUT4. Journal of Biological Chemistry, 294(30), 11369–11381. https://doi.org/10.1074/jbc.REV119.008351

Knudsen, J. R., Persson, K. W., Henriquez-Olguin, C., Li, Z., Di Leo, N., Hesselager, S. A., Raun, S. H., Hingst, J. R., Trouillon, R., Wohlwend, M., Wojtaszewski, J. F. P., Gijs, M. A. M., & Jensen, T. E. (2023). Microtubule-mediated GLUT4 trafficking is disrupted in insulin resistant skeletal muscle. ELife, 12, 1–24. https://doi.org/10.7554/eLife.83338

Knudsen, J. R., Steenberg, D. E., Hingst, J. R., Hodgson, L. R., Henriquez-Olguin, C., Li, Z., Kiens, B., Richter, E. A., Wojtaszewski, J. F. P., Verkade, P., & Jensen, T. E. (2020). Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Molecular Metabolism, 39(April), 100998. https://doi.org/10.1016/j.molmet.2020.100998

Lao, X. Q., Deng, H. B., Liu, X., Chan, T. C., Zhang, Z., Chang, L. Y., Yeoh, E. K., Tam, T., Wong, M. C. S., & Thomas, G. N. (2019). Increased leisure-time physical activity associated with lower onset of diabetes in 44 828 adults with impaired fasting glucose: A population-based prospective cohort study. British Journal of Sports Medicine, 53(14), 895–900. https://doi.org/10.1136/bjsports-2017-098199

Lin, Y., Fan, R., Hao, Z., Li, J., Yang, X., Zhang, Y., & Xia, Y. (2022). The Association Between Physical Activity and Insulin Level Under Different Levels of Lipid Indices and Serum Uric Acid. Frontiers in Physiology, 13(February). https://doi.org/10.3389/fphys.2022.809669

Mariano, I. M., Amaral, A. L., Ribeiro, P. A. B., & Puga, G. M. (2023). Exercise training improves blood pressure reactivity to stress: a systematic review and meta-analysis. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-38041-9

Parker Evans, McMillin Shawna, Weyrauch Luke, & Witczak Carol. (2019). Regulacion del transporte de glucosa en el musculo esqueletico y el metabolismo de la glucosa mediante entrenamiento fisico. Nutrients, 11(10), 1–24. https://www.mdpi.com/2072-6643/11/10/2432/htm

Pataky, M. W., Arias, E. B., Wang, H., Zheng, X., & Cartee, G. D. (2020). Exercise effects on γ3-AMPK activity, phosphorylation of Akt2 and AS160, and insulin-stimulated glucose uptake in insulin-resistant rat skeletal muscle. Journal of Applied Physiology, 128(2), 410–421. https://doi.org/10.1152/japplphysiol.00428.2019

Pires, N. F., Coelho-Júnior, H. J., Gambassi, B. B., De Faria, A. P. C., Ritter, A. M. V., De Andrade Barboza, C., Ferreira-Melo, S. E., Rodrigues, B., & Júnior, H. M. (2020). Combined Aerobic and Resistance Exercises Evokes Longer Reductions on Ambulatory Blood Pressure in Resistant Hypertension: A Randomized Crossover Trial. Cardiovascular Therapeutics, 2020. https://doi.org/10.1155/2020/8157858

Qiu, Y., Fernández-García, B., Lehmann, H. I., Li, G., Kroemer, G., López-Otín, C., & Xiao, J. (2023). Exercise sustains the hallmarks of health. Journal of Sport and Health Science, 12(1), 8–35. https://doi.org/10.1016/j.jshs.2022.10.003

Rahmati-Ahmadabad, S., Rostamkhani, F., Meftahi, G. H., & Shirvani, H. (2021). Comparative effects of high-intensity interval training and moderate-intensity continuous training on soleus muscle fibronectin type III domain-containing protein 5, myonectin and glucose transporter type 4 gene expressions: a study on the diabetic rat mo. Molecular Biology Reports, 48(8), 6123–6129. https://doi.org/10.1007/s11033-021-06633-1

Richter, E. A. (2021). Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake? American Journal of Physiology - Endocrinology and Metabolism, 320(2), E240–E243. https://doi.org/10.1152/AJPENDO.00503.2020

Saki Kondo1, 2, 3, Takuya Karasawa1, Ayumi Fukazawa1, Atsuko Koike1, M. T. and S. T. (2021). Effects of a Very High-Carbohydrate Diet and Endurance Exercise Training on Pancreatic Amylase Activity and Intestinal Glucose Transporter Content in Rats. J Nutr Sci Vitaminol, 68, 97–103, 2022, 68, 97–103.

Saltiel, A. R. (2021). Insulin signaling in health and disease. The Journal of Clinical Investigation, 17, 1–12. https://doi.org/10.1172/JCI142241.

Shamsnia, E., Matinhomaee, H., Azarbayjani, M. A., & Peeri, M. (2023). The Effect of Aerobic Exercise on Oxidative Stress in skeletal Muscle Tissue: A Narrative Review. Gene, Cell and Tissue, 10(4). https://doi.org/10.5812/gct-131964

Sorriento, D., Di Vaia, E., & Iaccarino, G. (2021). Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Frontiers in Physiology, 12(April), 1–14. https://doi.org/10.3389/fphys.2021.660068

Tokumitsu, H., & Sakagami, H. (2022). Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction. International Journal of Molecular Sciences, 23(19). https://doi.org/10.3390/ijms231911025

Vidal Moreno de Vega, C., Lemmens, D., de Meeûs d’Argenteuil, C., Boshuizen, B., de Maré, L., Leybaert, L., Goethals, K., de Oliveira, J. E., Hosotani, G., Deforce, D., Van Nieuwerburgh, F., Devisscher, L., & Delesalle, C. (2023). Dynamics of training and acute exercise-induced shifts in muscular glucose transporter (GLUT) 4, 8, and 12 expression in locomotion versus posture muscles in healthy horses. Frontiers in Physiology, 14(August), 1–13. https://doi.org/10.3389/fphys.2023.1256217

Wang, H., Zheng, A., Arias, E. B., Kwak, S. E., Pan, X., Duan, D., & Cartee, G. D. (2023). AS160 expression, but not AS160 Serine-588, Threonine-642, and Serine-704 phosphorylation, is essential for elevated insulin-stimulated glucose uptake by skeletal muscle from female rats after acute exercise. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 37(7), e23021. https://doi.org/10.1096/fj.202300282RR

Wang, T., Wang, J., Hu, X., Huang, X., & Chen, G.-X. (2020). Current understanding of glucose transporter 4 expression and functional mechanisms. World Journal of Biological Chemistry, 11(3), 76–98. https://doi.org/10.4331/wjbc.v11.i3.76

Yuan, Y., Kong, F., Xu, H., Zhu, A., Yan, N., & Yan, C. (2022). Cryo-EM structure of human glucose transporter GLUT4. Nature Communications, 13(1), 1–8. https://doi.org/10.1038/s41467-022-30235-5

Zhang, D., Lee, J. H., Shin, H. E., Kwak, S. E., Bae, J. H., Tang, L., & Song, W. (2021). The effects of exercise and restriction of sugar-sweetened beverages on muscle function and autophagy regulation in high-fat high-sucrose-fed obesity mice. Diabetes and Metabolism Journal, 45(5), 773–786. https://doi.org/10.4093/DMJ.2020.0157

Downloads

Publicado

2024-08-11

Como Citar

Ayubi, N., Wibawa, J. C., Lesmana, H. S. ., Callixte, C. ., & Jr., P. B. D. (2024). O exercício físico induz aumento da translocação dos transportadores de glicose tipo 4 (GLUT4): uma revisão sistemática. Retos, 59, 1003–1008. https://doi.org/10.47197/retos.v59.104078

Edição

Secção

Revisões teóricas sistemáticas e/ou metanálises

Artigos mais lidos do(s) mesmo(s) autor(es)

1 2 3 4 > >>