Effects of two types of strength training, one based on execution speed and the other on % of 1RM over: body composition, neuromuscular activation, and kinetic and kinematic variables, in physically active women
DOI:
https://doi.org/10.47197/retos.v62.108002Keywords:
Load-velocity profile, mean propulsive velocity, velocity-based, %1RM, training bone mass, muscular mass, neuromuscular activity, velocity-based trainingAbstract
The purpose of this study was to investigate the effects of two types of resistance training (RT), one based on the velocity load displacement (VBT) vs. another performed at 80% of 1RM (PBT) on muscle mass (MM), mineral bone density (BMD) mineral bone component (BMC), neuromuscular activation (EMG), maximal squat strength (FSQ), Vertical jump (VJ), la power output cycling (PP) and sprint 30-m time (RV30). Thirty-one women were randomly divided in VBT group (n=16) or PBT (n=15), the two groups training 3 training times per week, for 12 weeks. Before and after training FSQ, VJ, PP, RV30, BMD, BMC, MM, and EMG values were determined. The VBT group trained at a mean propulsive velocity (MVP) of 0.83 ±0.08 m s − 1 and the PBT group trained at 80% 1RM. There were no significant differences between the groups at baseline. The RT produced significant increases (p < 0.05) in the two groups in FSQ (VBT33.79%, PBT27.94%), VJ (VBT 19.11% ,8.77% PBT), RV30 (VBT 6.27 %, PBT 1.66%), PP (VBT 32.2%, PBT 16.11%), fat-free MM (VBT 3.7%, PBT 2.64%) CMO (VBT 0.39%, PBT 0.25%) and in BMD (VBT 0.76%, PBT 0.80%). No significant variations in EMG activity were observed in any of the groups. Significant differences were identified between the two training groups for BMD, PP, CMJ, and RV30. In conclusion, VBT group showed better results than PBT with a lower training load, which is important for a best fatigue monitoring during strength training.
References
Banyard, G., Nosaka, K., Haff, & G., G. (2017). Reliability and Validity of the Load-Velocity Relationship to Predict the 1RM Back Squat. J Strength Cond Res, 31(7), 1897-1904. doi:10.1519/jsc.0000000000001657
Banyard, G., Tufano, J., Weakley, J. (2021). Superior Changes in Jump, Sprint, and Change-of-Direction Performance but Not Maximal Strength Following 6 Weeks of Velocity-Based Training Compared With 1-Repetition-Maximum Percentage-Based Training. Int J Sports Physiol Perform, 16(2), 232-242. doi:10.1123/ijspp.2019-0999
Banyard, H., Tufano, J. J., Delgado, J., Thompson, S. W., & Nosaka, K. (2019). Comparison of the Effects of Velocity-Based Training Methods and Traditional 1RM-Percent-Based Training Prescription on Acute Kinetic and Kinematic Variables. Int J Sports Physiol Perform, 14(2), 246-255. doi:10.1123/ijspp.2018-0147
Barón Barón, A. C., Fernandez Ortega, J. A., & Camargo Rojas, D. A. (2024). Efectos de dos programas de entrenamiento de fuerza sobre la capacidad física funcional y activación muscular en un grupo de adultos mayores. Retos, 51, 741–748. https://doi.org/10.47197/retos.v51.99901
Blazevich, A. J., & Jenkins, D. G. (2002). Effect of the movement speed of resistance training exercises on sprint and strength performance in concurrently training elite junior sprinters. J Sports Sci, 20(12), 981-990. doi:10.1080/026404102321011742
Campos, G. E., Luecke, T. J., Wendeln, H. K., Toma, K., Hagerman, F. C., Murray, T. F., . . . Staron, R. S. (2002). Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol, 88(1-2), 50-60. doi:10.1007/s00421-002-0681-6
Cavarretta, D. J., Hall, E. E., & Bixby, W. R. (2019). The acute effects of resistance exercise on affect, anxiety, and mood – practical implications for designing resistance training programs. International Review of Sport and Exercise Psychology, 12(1), 295-324. doi:10.1080/1750984X.2018.1474941
Conceição, F., Fernandes, J., Lewis, M., Gonzaléz-Badillo, J. J., & Jimenéz-Reyes, P. (2016). Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci, 34(12), 1099-1106. doi:10.1080/02640414.2015.1090010
Dorrell, H. F., Smith, M. F., & Gee, T. I. (2020). Comparison of Velocity-Based and Traditional Percentage-Based Loading Methods on Maximal Strength and Power Adaptations. J Strength Cond Res, 34(1), 46-53. doi:10.1519/jsc.0000000000003089
Fernandez Ortega, J. A., los Reyes, Y. G. D., & Garavito Peña, F. R. (2020). Effects of strength training based on velocity versus traditional training on muscle mass, neuromuscular activation, and indicators of maximal power and strength in girls soccer players. Apunts Sports Medicine, 55(206), 53-61. doi:https://doi.org/10.1016/j.apunsm.2020.03.002
García-Ramos, A., Janicijevic, D., González-Hernández, J. M., Keogh, J. W. L., & Weakley, J. (2020). Reliability of the velocity achieved during the last repetition of sets to failure and its association with the velocity of the 1-repetition maximum. PeerJ, 8, e8760. doi:10.7717/peerj.8760
Gonzalez-Badillo, J. J., Marques, M. C., & Sanchez-Medina, L. (2011). The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet, 29a, 15-19. doi:10.2478/v10078-011-0053-6
Gonzalez-Badillo, J. J., Pareja-Blanco, F., Rodriguez-Rosell, D., Abad-Herencia, J. L., Del Ojo-Lopez, J. J., & Sanchez-Medina, L. (2015). Effects of velocity-based resistance training on young soccer players of different ages. J Strength Cond Res, 29(5), 1329-1338. doi:10.1519/jsc.0000000000000764
Gonzalez-Badillo, J. J., & Sanchez-Medina, L. (2010). Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med, 31(5), 347-352. doi:10.1055/s-0030-1248333
González-Hernández, J., García Ramos, A., Capelo-Ramírez, F., Castaño, A., Marquez, G., Boullosa, D., & Jimenez-Reyes, P. (2017). Mechanical, Metabolic, and Perceptual Acute Responses to Different Set Configurations in Full Squat. Journal of Strength and Conditioning Research, 34,1. 1581-1590. doi:10.1519/JSC.0000000000002117
Hakkinen, K., Kraemer, W. J., Newton, R. U., & Alen, M. (2001). Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand, 171(1), 51-62. doi:10.1046/j.1365-201X.2001.00781.x
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G.( 2000). Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol, 10(5), 361-74. doi: 10.1016/s1050-6411(00)00027-4. PMID: 11018445.
Ikezoe, T., Kobayashi, T., Nakamura, M., & Ichihashi, N. (2020). Effects of Low-Load, Higher-Repetition vs. High-Load, Lower-Repetition Resistance Training Not Performed to Failure on Muscle Strength, Mass, and Echo Intensity in Healthy Young Men: A Time-Course Study. J Strength Cond Res, 34(12), 3439-3445. doi:10.1519/jsc.0000000000002278
Jiménez-Reyes, P., Castaño-Zambudio, A., Cuadrado-Peñafiel, V., González-Hernández, J. M., Capelo-Ramírez, F., Martínez-Aranda, L. M., & González-Badillo, J. J. (2021). Differences between adjusted vs. non-adjusted loads in velocity-based training: consequences for strength training control and programming. PeerJ, 9, e10942. doi:10.7717/peerj.10942
Keeler, L. K., Finkelstein, L. H., Miller, W., & Fernhall, B. (2001). Early-phase adaptations of traditional-speed vs. superslow resistance training on strength and aerobic capacity in sedentary individuals. J Strength Cond Res, 15(3), 309-314.
Krieger, J. W. (2010). Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. J Strength Cond Res, 24(4), 1150-1159. doi:10.1519/JSC.0b013e3181d4d436
Lopes, C. R., Aoki, M. S., Crisp, A. H., de Mattos, R. S., Lins, M. A., da Mota, G. R., . . . Marchetti, P. H. (2017). The Effect of Different Resistance Training Load Schemes on Strength and Body Composition in Trained Men. Journal of human kinetics, 58, 177-186. doi:10.1515/hukin-2017-0081
Maddalozzo, G. F., & Snow, C. M. (2000). High intensity resistance training: effects on bone in older men and women. Calcif Tissue Int, 66(6), 399-404. doi:10.1007/s002230010081
McBride JM, B. J., Triplett-McBride T. . (2003). Effect of resistance exercise volume and complexity on EMG, strength, and regional body composition. Eur J Appl Physiol, 90(5-6), 626-632.
Morton, R. W., Oikawa, S. Y., Wavell, C. G., Mazara, N., McGlory, C., Quadrilatero, J., . . . Phillips, S. M. (2016). Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. Journal of applied physiology (Bethesda, Md. : 1985), 121(1), 129-138. doi:10.1152/japplphysiol.00154.2016
Orange, S., Liefeith, A., Metcalfe, J., Robinson, A., & Applegarth, M. (2019). Effects of In-Season Velocity- Versus Percentage-Based Training in Academy Rugby League Players. International Journal of Sports Physiology and Performance, 15, 1-19. doi:10.1123/ijspp.2019-0058
Padulo, J., Mignogna, P., Mignardi, S., Tonni, F., & D'Ottavio, S. (2012). Effect of different pushing speeds on bench press. Int J Sports Med, 33(5), 376-380. doi:10.1055/s-0031-1299702
Pareja-Blanco, F., Alcazar, J., Cornejo-Daza, P. J., Sánchez-Valdepeñas, J., Rodriguez-Lopez, C., Hidalgo-de Mora, J., Ortega-Becerra, M. (2020). Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand J Med Sci Sports, 30(11), 2154-2166. doi:10.1111/sms.13775
Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Gorostiaga, E. M., & Gonzalez-Badillo, J. J. (2014). Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med, 35(11), 916-924. doi:10.1055/s-0033-1363985
Pareja-Blanco, F., Rodriguez-Rosell, D., Sanchez-Medina, L., Sanchis-Moysi, J., Dorado, C., Mora-Custodio, R., Gonzalez-Badillo, J. J. (2017). Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports, 27(7), 724-735. doi:10.1111/sms.12678
Pruitt, L. A., Taaffe, D. R., & Marcus, R. (1995). Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res, 10(11), 1788-1795. doi:10.1002/jbmr.5650101123
Putman CT, Gillies E, MacLean IM, Bell GJ. (2004). Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol, 92, 376–384.
Rana, S. R., Chleboun, G. S., Gilders, R. M., Hagerman, F. C., Herman, J. R., Hikida, R. S., Toma, K. (2008). Comparison of early phase adaptations for traditional strength and endurance, and low velocity resistance training programs in college-aged women. J Strength Cond Res, 22(1), 119-127. doi:10.1519/JSC.0b013e31815f30e7
Randell, A. D., Cronin, J. B., Keogh, J. W., Gill, N. D., & Pedersen, M. C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. Journal of strength and conditioning research, 25(1), 87–93. https://doi.org/10.1519/JSC.0b013e3181fee634
Rodríguez-Rosell D, Y.-G. J., Mora-Custodio R, Sánchez-Medina L, Ribas-Serna J, González-Badillo JJ. (2021). Effect of velocity loss during squat training on neuromuscular performance. Scand J Med Sci Sports, 31(8), 1621-1635.
Sanchez-Medina, L., & Gonzalez-Badillo, J. (2011). Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sport Exerc 43, 1725-1734.
Sanchez-Moreno, M., Rodriguez-Rosell, D., Pareja-Blanco, F., Mora-Custodio, R., & Gonzalez-Badillo, J. J. (2017). Movement Velocity as Indicator of Relative Intensity and Level of Effort Attained During the Set in Pull-Up Exercise. Int J Sports Physiol Perform, 12(10), 1378-1384. doi:10.1123/ijspp.2016-0791
Schoenfeld, B. J., Grgic, J., Ogborn, D., & Krieger, J. W. (2017). Strength and Hypertrophy Adaptations Between Low- vs. High-Load Resistance Training: A Systematic Review and Meta-analysis. The Journal of Strength & Conditioning Research, 31(12), 3508-3523. doi:10.1519/jsc.0000000000002200
Schoenfeld, B. J., Grgic, J., Van Every, D. W., & Plotkin, D. L. (2021). Loading Recommendations for Muscle Strength, Hypertrophy, and Local Endurance: A Re-Examination of the Repetition Continuum. Sports (Basel), 9(2). doi:10.3390/sports9020032
Schoenfeld, B. J., Ogborn, D. I., & Krieger, J. W. (2015). Effect of repetition duration during resistance training on muscle hypertrophy: a systematic review and meta-analysis. Sports Med, 45(4), 577-585. doi:10.1007/s40279-015-0304-0
Schuenke, M. D., Herman, J. R., Gliders, R. M., Hagerman, F. C., Hikida, R. S., Rana, S. R., . . . Staron, R. S. (2012). Early-phase muscular adaptations in response to slow-speed versus traditional resistance-training regimens. Eur J Appl Physiol, 112(10), 3585-3595. doi:10.1007/s00421-012-2339-3
Seitz, L. B., Reyes, A., Tran, T. T., Saez de Villarreal, E., & Haff, G. G. (2014). Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis. Sports Med, 44(12), 1693-1702. doi:10.1007/s40279-014-0227-1
Specker, B., Thiex, N. W., & Sudhagoni, R. G. (2015). Does Exercise Influence Pediatric Bone? A Systematic Review. Clin Orthop Relat Res, 473(11), 3658-3672. doi:10.1007/s11999-015-4467-7
Stone, W. J., & Coulter, S. P. (1994). Strength/Endurance Effects From Three Resistance Training Protocols With Women. The Journal of Strength & Conditioning Research, 8(4), 231-234. Retrieved from https://journals.lww.com/nsca-jscr/fulltext/1994/11000/strength_endurance_effects_from_three_resistance.5.aspx
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jairo Alejandro Fernandez Ortega, Dario-Dario Mendoza Romero , Luz Amelia Hoyos Cuartas
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and ensure the magazine the right to be the first publication of the work as licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of authorship of the work and the initial publication in this magazine.
- Authors can establish separate additional agreements for non-exclusive distribution of the version of the work published in the journal (eg, to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Is allowed and authors are encouraged to disseminate their work electronically (eg, in institutional repositories or on their own website) prior to and during the submission process, as it can lead to productive exchanges, as well as to a subpoena more Early and more of published work (See The Effect of Open Access) (in English).
This journal provides immediate open access to its content (BOAI, http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess) on the principle that making research freely available to the public supports a greater global exchange of knowledge. The authors may download the papers from the journal website, or will be provided with the PDF version of the article via e-mail.